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SECTION - I

MEASURABLE SETS

Introduction

In measure theory, a branch of mathematics, the concept of Lebesgue measure, was given by French
mathematician Henri Lebesgue in 1901. Sets that can be assigned a Lebesgue measure are called
Lebesgue-measurable; the measure of the Lebesgue-measurable set A is here denoted by m*(A).

Lebesgue Measure
In this section we shall define Lebesgue Measure, which is a generalization of the idea of length.

1.1  Definition. The length [(1) of an interval | with end points a and b is defined as the difference of
the end points. In symbols, we write.

I() =b- a

1.2 Definition. A function whose domain of definition is a class of sets is called a Set Function. For
example, length is a set function. The domain being the collection of all intervals.

1.3 Definition. An extended real — valued set function p defined on a class E of sets is called
Additiveif A e E,B €¢E,AUB e Eand AnB = ¢,imply

u(AUB) = u(4) + u(B)

1.4 Definition. An extended real valued set function u defined on a class E of sets is called finitely
additive if for every finite disjoint classes {44, 4, ...., A, }of sets in E, whose union is also in E,

we have

RUZAD = ) u(A)

1.5  Definition. An extended real-valued set function p defined on a class E of sets is called
countably additive it for every disjoint sequence {4,,} of sets in E whose union is also in E, we have

RUELAD = ) (4D

1.6 Definition. Length of an open set is defined to be the sum of lengths of the open intervals of
which it is composed of. Thus, if G is an open set, then

16) = ) 1)

where

G = Uply, Iy, Nly, = ¢ if ny #ny.
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1.7 Definition. The Lebesgue Outer Measure or simply the outer measure m* of a set A is defined as
m*(A) = Aicrll]fan L(In).

where the infimum is taken over all finite or countable collections of intervals {In} such that AcUI,
Since the lengths are positive numbers, it follows from the definition of m* that m*(4) >0.
1.8 Remark: (i) If A € B ,then m*(4) < m*(B) i.e. outer-measure has monotone property.

Proof: By definition of outer-measure, for each € > 0, there exist a countable collection of open
interval {I} such that B < U, I,, and

m*(B) + € > Y, l(1,) ..1)
nowAd € BandB < U, I,
=>Ac U,
m*(4) < Yn L(In)
< m"(B) + €(using 1))
= m*(4) < m"(B) + ¢
but € > 0 is arbitrary, m*(A) < m*(B) hence proved.
(ii) Outer-measure of a set is always non-negative.
1.9 Theorem. Outer measure is translation invariant.

Proof. Let € > 0 be given. Then by definition of outer measure, There exist a countable collection of
intervals {I,} suchthat A c I, and

m* (A) + € >, l(I,).
Now, A < U,(I,,)
=> A + x < Up(Ip + x),
=>m* (A + x)<y, LU, + x) = X I(I,) [length is translation invariant]
<m'A + e
Since e is arbitrary positive number, we have
(2) m (4 + x) <m*(4) (1)

To prove reverse inequality, Let € > 0 be given. Then by definition of outer measure, There exist a
countable collection of intervals {J,,} such that

A+xc UyJ, and
m (A+x)+ € >X, l(J,).
Now, A+x c Up/n
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= Ac Up(p—x)

= m’ (A) —<Zn lUn - x)

2 m" (A) <y, lJ)<m" (A+x) + €

= m* (A) <m*(4 + x) 2

Then Combining (1) and (2), the required result follows.

ie,m" (A) = m"(A+x)

1.10 Theorem. The outer measure of an interval is its length.

Proof. CASE (1) Let us suppose, first | is a closed and bounded interval, say | = [a, b]
To prove: m*(l) = [a, b] =b - a.

Now for each €>0, | =[a, b] < (a - ¢, b+ €) then

by definition of outer-measure

=>m*(l)<f(a-¢ bt+te) < (b+te-ate)

=m*(l)<b-a+2e¢

since ¢ is an arbitrary, m*(I) < b-a= £ () Q)

Now to prove, m*(l) = b-a, then it is sufficient to prove m*(1) > b-a. let {I»} be a countable collection of
open intervals which covering I i.e.

| S Uy, 1,
Yn £ (I,) = b-aforall n € N so it is sufficient to prove that
inf),,#(l,) =b-a

since | = [a, b] is compact, then by Heine Boral theorem, we can select a finite number of open intervals
from this {In} such that their union contains I.

Let the intervals be Ji, Jz, ..., Jp such that U?_, J; 2 [a, b].
Now it is sufficient to prove Y!_, £(J;) = b-a 2

Now a € | = [a, b], there exist open interval J1 = (a1, b1) from the above-mentioned finite no. of intervals
such thata; <a< bthenb; € I.

Again, there exist an open interval (az, b2) from the finite collection J1, Jo, ..., Jp such that a; <b1 < by.
Continuing this, we get a sequence of open intervals

(a1, by), (a2, b2), ..., (ap ,bp ) from Ju, Jo, ..., Jp satisfying a; < bi1 < bi ,i=2,3,.....,p since the collection is
finite so the process must stop with an interval satisfying ap < bp-1 < bp and ap <b < by

Yo l(l) = X0 ()= (a1, br) + £ (az, b2) +.... € (ap, bp)
= (b1 -a1) + (b2 -a2) + ...+ (bp -ap)

=bp + (bp-1 —ap) +...+b1 -a2 — a1
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>bp—a1
> b-a
=>inf ), ¢(I,) = b-a
=>m*(l) > b-a (4)
Hence result is proved in the case when I closed and bounded interval.

CASE (2) let I be bounded open interval with end points a and b, then for every real no. >0 [a+ ¢, b- €]
clclab]

=>m*[a+t ¢, b- €] < m*(l) < m* [a, b]

=> ¢ [at g, b- €] < m*(l) < ¢ [a, b] (by case 1)
=>p- ¢ -a- e< m*(I) <b-a

since ¢ is arbitrary,

we get b-a < m*(I) < b-a

=>m*(I) =b-a.

CASE (3) if I is the unbounded interval, then for each real no. r> 0, we can find bounded closed interval
J c I'such that £ (J)>r

NowJc I =>m* (J) <m*(l)

=L J)<m*(l)

=>m* (I) > r since this hold for each real no. r,

we get m* (I) = oo = £(I)

i.e. outer-measure is of an interval equal to its length.

1.11 Theorem. Let {A,} be a countable collection of sets of real numbers. Then
m*(LA,) < X m*A,.

Proof. Proof. If one of the sets A,, has infinite outer measure, the inequality holds trivially. So suppose
m*{4,} is finite. Then, given € > 0, there exists a countable collection {I,,;} of open intervals such
that A,, cU; I,,; and

. &
2 l(ln,i) < m*(4,) +2_n
by the definition of m*{4,,}.

Now the collection [I,,;] .= Un [In,i]i is countable, being the union of a countable number of

n,

countable collections, and covers U,, 4, . Thus

m* (U A, ) <Znil(L;)
n
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= 2 Zil(Iy, 1)

< (m*(An) + zin)

€

Im*A, + X, om

= X,m'A, + eanin

= JIm'A, + €
Since e is an arbitrary positive number, it follows that
m*(Updyn) < 2m"(4y).
1.12 Theorem. Outer-measure of singleton set of reals is zero

Proof: Let A = {a} Then, since A = {a},{a} S (a —%,a+%) vn € N

* _1 1
2 m*(a) < m*(a n,a+n)
* 2
= m*(a) < -
= 0 < m*(a) s%foreach n.
In limiting case m*(a) = 0.

1.13 Theorem. Outer-measure of null set is zero.

Proof: Since ¢ < (—%%) vn €N

11

> m@)sm(-57)

> mi(p) <=

= 0 <m(¢)=< %for each n. In limiting case m*(¢) = 0.
1.14 Corollary. If A'is countable, m* A = 0

Proof. We know that a countable set is the union of a countable family of singleton. Therefore A = U
[x,,], which yields

m'A = m"[U (x,)] < 2 m" [x,] (by the above theorem)

But as already pointed out outer measure of a singleton is zero. Therefore it follows that
m*A <0

Since outer measure is always a non — negative real number, m* A = 0.

1.15 Remark: The Sets N, Z, Q has outer-measure zero.
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1.16 Remark: Prove that [0, 1] is uncountable.

Proof: Assume on the contrary that the set [0, 1] is countable, then as we know outer-measure of
countable set is zero, then m*[0,1] = 0,i.e,1[0,1] = 0

i.e.,1 = 0, acontradiction. therefore [0, 1] is uncountable.
1.17 Corollary. If m* A = 0,thenm*(A uB) = m*B.
Proof. Using the above proposition

m*"(AuUB)<m*A + mx B

=0+ m'B (1)
AlsoB cA UB
Therefore m* B <m* (A UB) (i)

From (i) and (ii) it follows that
m*B = m* (A UB)

Note:- Because of the property m* (U An ) <X m* A, , the function m* is said to be countably Sub-
additive. 1t would be much better if m* were also countably additive, that is,

ifm*(UA4,) =Ym"A,.

for every countable collection [A,,] of disjoint sets of real numbers. If we insist on countable additivity,
we have to restrict the domain of the function m* to some subset m of the set 2R of all subsets of R. The
members of m are called the measurable subsets of R. That is, to do so we suitably reduce the family of
sets on which m* is defined. This is done by using the following definition due to Carathedory.

1.18 Definition. A set E of real numbers is said to be m* measurable, if for every set A € R, we have
m"A =m"(ANE) + m*"(ANE®)
SinceA=(AnE)uU (ANE,
It follows from the definition that
m'A=m"[(ANE)U(ANE )] <sm"(ANE) + m" (ANE®)
Hence, the above definition reduces to:
A set E € R is measurable if and only if for every set A € R, we have
m* A >m* (A N E) + m* (AN E°.
For example ¢ is measurable.
1.19 Theorem. Prove that ¢ is measurable set.
Proof: Let A be set of reals, then m* A =m* (A N E) + m* (A N E®)
PUtE=¢
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m* (Ang)+m*(An¢)=m*(¢p)+m*(AnR)
=0+m*A

=m* A
This implies ¢ is measurable.
1.20 Theorem. Prove that R is measurable set.
Proof: Let A be set of reals, then
m* A=m* (ANE)+m*(ANE°
PutE=R
m* (A NR) + m* (A "R =m* (A) + m* (A N¢)

=m* (A) +m* (¢)

=m*A+0

=m* A
This implies R is measurable.
1.21 Theorem. If m* E =0, then E is measurable.
Proof. Let A be any set. Then A N E c E and so

m*(ANE)<m*E=0 Q)
Also A > A n EF, and so
m* A>m* (AN E®) =m* (AN E®) +m* (ANE)

as m* (AN E)=0by (i)
Hence E is measurable.
1.22 Theorem. Every subset of E is measurable if m* E = 0.
Proof: Let F be any subset of E, where m* E = 0.
thensince F C E
this implies m* F <m* E
this implies m* F <0
Alsom* F>0
therefore m* F =0.
this implies F is measurable.
1.23 Theorem. Every singleton set is measurable.

Proof: Since outer measure of singleton set is zero and set of measure zero is measurable. Therefore,
singleton set is measurable.
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1.24 Theorem. Every countable set is measurable.

Proof: Since outer measure of countable set is zero and set of measure zero is measurable. Therefore
countable set is measurable.

1.25 Theorem. If a set E is measurable, then so is its complement E°.

Proof. The definition is symmetrical with respect to E®, and so if E is measurable, its complement E° is
also measurable.

1.26 Theorem. Union of two measurable sets is measurable.

Proof. Let E1 and E> be two measurable sets and let A be any set. Since E> is measurable, we have

m"(ANE;) = m"(ANE{ NEy) + m*"(ANEf NE3) Q)

and since A N (E; VE,) = (ANE)U[ANE;NES ] (i)
Therefore by (ii) we have

m'[A N (E;UE)] sm" (ANE,) + m"[ANE, NEf ] (iii)
Thus

m* [AN(E,UEy)|+ m* (ANEf NES)

<m" (ANE))+ m"(ANE, VE{)+ m*" (ANEf NES)
= m*(ANE;) + m* (ANE{) (by (i)

< m* A (since E; is measurable)

ie.m* (AN (ErUE2))+m* (An (E1UE2)Y) <m*A
Hence E; U Ez is measurable.

If E1 and E2 are measurable, then E1 M Ez is also measurable.

In fact we note that Ei1, E> are measurable = Ey ,E5 are measurable = Ef E° is measurable =
(Ef VES )¢ = E; NnE, is measurable.

Similarly, it can be shown that if E; and E> are measurable, then Ef » E5 is also measurable.
1.27 Lemma. Difference of two measurable sets is also measurable.

Proof: Let E: and E> be two measurable sets. Then ES is measurable and hence
Ei1NES = E;- E,is measurable, being the intersection of two measurable sets.

1.28 Definition. Algebra or Boolean Algebra: - A collection A of subsets of a set X is called an
algebra of sets or a Boolean Algebra if

(i) A BeA=>AUBeA
(i) AeA=>AcA
(ili)  For any two members A and B of A, the intersection A N B isin A.

Because of De Morgan’s formulae (i) and (i1) are equivalent to (i1) and(iii).
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It follows from the above definition that the collection M of all measurable sets is an algebra. The proof
is an immediate consequence of Theorems 1.25 and 1.26.

1.29 Definition. By a Boolean ¢ - algebra or simply a o - algebra or Borel field of a collection of sets,
we mean a Boolean Algebra A of the collection of the sets such that union of any countable collection of
members of this collection is a member of A.

From De Morgan’s formula an algebra of sets is a o - algebra or Borel field if and only if the
intersection of any countable collection of members of A is a member of A.

1.30 Lemma. Let A be any set, and Ey, E,, ..., E, a finite sequence of disjoint measurable sets. Then
m* (AN U E]) = Zm'(ANE)
Proof. We shall prove this lemma by induction on n. The lemma is trivial for
n=1. Letn> 1 and suppose that the lemma holds for n — 1 measurable sets E;.
Since En is measurable, we have
m* (X) = m* (X NE,) + m* (X nE, ) forevery set X e R.
In particular we may take
X = AN[UM, E.
Since Ey, E,, ..., E, are disjoint, we have
XNE, = AN[ULE]NE,=ANE,
XNES = AN[UY E;1NEE = AN ([UL! Ej]
Hence, we obtain m* X = m*(A NE,) + m*(A N [UT'E;]) (i)

But since the lemma holds for n - 1 we have
n—1

m(ANLUED = ) m'(ANE)

i-1
Therefore (i) reduces to

m'X = mx(ANE,) + Z'm*(ANE)
= X m"(ANEy.

Hence the lemma.

1.31 Lemma. Let A be an algebra of subsets and {E; | i € N} a sequence of sets in A. Then there
exists a sequence [D; | i € N] of disjoint members of A such that

Di CEi (l EN)
UienD; = UienE;
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Proof. For every i € N, let
D, = E,— (EyUE,U... .. VE,_1)

= (E, N(E{UE,U...... VE,_1))¢
= E,NnE,“NE,* N NE,_4

Since the complements and intersections of sets in A are in A, we have each D,, € A. By construction,
we obviously have D; cE; (i e N)

Let Dn and Dm be two such sets, and suppose m < n. Then Dm < Em, and so
Dm N Dnc Emn Dy

= Ep NEZ,NEH ol . EG N . NES_; (using (1)

= (EpxNES) D= @ e, = ¢

The relation (i) implies U; .yD; c Uien E;

It remains to prove that

UienDioUienE;

For this purpose let x be any member of U;cyE;. Let n denotes the least natural number satisfying X e
En. Then we have

X EEn - (El UEzu ...... UETL—I) = DTL CUiENDn'
This completes the proof.
1.32  Theorem. The collection M of measurable sets is a ¢ - algebra.

Proof. We have proved already that M is an algebra of sets and so we have only to prove that M is
closed with respect to countable union. By the lemma proved above each set E of such countable union
must be the union of a sequence {D,, } of pairwise disjoint measurable sets. Let A be any set, and let

E, = U; D; cE. Then Ey is measurable and E5 D E€ . Hence
m*A = m*(ANE,) + m*(ANES) >m*(AE,) + m*(A NES).
But, by lemma 1.30,
m*(ANEy) = m'[A~Uie D) = I m* (AN D)
Therefore,
m*A>X, m"(AnD;) + m*"(ANE®)
Since the left hand side of the inequality is independent of n, we have
m*A>22 m*"(AnD;) + m*"(ANE°)
>m* (U2, [A nD;]) + m*(A nE®) (by countably subadditivity of m*)

= m*"(ANUZ, D;) + m"(ANE®)
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= m*(A NE) + m*(A NES).

which implies that E is measurable. Hence the theorem.
1.33 Lemma. The interval (a, « ) is measurable
Proof. Let A be any set and

A, = An(a, o)

A, = An(a, o) = AN(— o,al.

Then we must show that
m*A; + m*A, <m" A

If m*A = oo, then there is nothing to prove. If m* A < oo, then given € > 0 there is a countable
collection {I.} of open intervals which cover A and for which

SI(L) sm* A + €

Let I, = I, n(a,©)and I, = I, n(—c,a). Then I, and I, are intervals (or empty) and I(I,,)) =
L) + Uy = m*(I,) +m*(Iy)

Since A, cUI,, we have

m* A, <m*(UL,) <X m* 1, (i)
and since, 4, < U I,,, we have

m* A, <m*(U I,)<Xm*1I,, (iv)
Adding (iii) and (iv) we have

m'A +mA, <Im'l, + <Xm'I,

S(m I, + <m*I,)

= 21(L,)  [by (iD)]

<mA+ e [by(D)]

But € was arbitrary positive number and so we must have m* A; + m* A, <m* A.

1.34 Definition. The collection 3 of Borel sets is the smallest ¢ - algebra which contains all of the
open sets.

1.35 Theorem. Every Borel set is measurable. In particular each open set and each closed set is
measurable.

Proof. We have already proved that (a, «) is measurable. So we have
(a, )¢ = (—o0,a] measurable.
Since (—o0,b) = U2, ((—oo,b —%]) and we know that countable union of measurable sets is

measurable, therefore (- «, b) is also measurable. Hence each open interval,
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(a,b) = (—0,b) N (a, o) is measurable, being the intersection of two measurable sets. But each open
set is the union of countable number of open intervals and so must be measurable (The measurability of
closed set follows because complement of each measurable set is measurable).

Let M denote the collection of measurable sets and C the collection of open sets. Then

C < M. Hence 3 is also a subset of M since it is the smallest ¢ - algebra containing C . So each element
of B is measurable. Hence each Borel set is measurable.

1.36 Definition. If E is a measurable set, then the outer measure of E is called the Lebesgue Measure
of E, is denoted by m. Thus, m is the set function obtained by restricting the set function m* to the
family M of measurable sets. Two important properties of Lebesgue measure are summarized by the
following theorem.

1.37 Theorem. Let {E,,} be a sequence of measurable sets. Then
m(UE;) <XmE;
If the sets En are pairwise disjoint, then

m(UE;) = Y mE;.

Proof. The inequality is simply a restatement of the sub-additivity of m*. If {E; }is a finite sequence of
disjoint measurable sets. So we apply lemma 1.30 replacing A by R. That is , we have

m* (R AUPE]) = 514 m* (R AE)
n
m*(UPE) = ) m'E,
i

and so m is finitely additive..

Let {Ei} be an infinite sequence of pairwise disjoint sequence of measurable sets. Then
And so U2, E; o UL E,

mUZ E) >mUG -y E) = 22, mE;

Since the left-hand side of this inequality is independent of n, we have

mUZ,E) = X2, mE;

The reverse inequality follows from countable sub-additivity and we have

m(U2,E) = 22, mE;

Hence the theorem is proved.

1.38 Theorem. Let {En} be an infinite sequence of measurable sets such that E,,,, < E,, for each n.

Let mE; < o. Then
m(' |En> = lim mE,
n—oo

n=1
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Proof. Let E = NjZ, E;and let F; = E; — E;_;. Then since {En} is a decreasing sequence. We have
n Fi = (I) .

Also we know that if A and B are measurable sets then their difference A —B = ANB® is also
measurable. Therefore each Fi is measurable. Thus {Fi} is a sequence of measurable pairwise disjoint
sets.

o0 0

Now | Jr=|J&i-Ew

i=1 i=1

= E; n (U EY)

= E; N <ﬁ Ei>c

i=1
== E1 N EC
- El - E

Hence

= Yizy m(E; — Ej;1) = m(E, — E) o (@)
Since E; = (E; — E) UE, therefore
mE; = m(E; — E) + m(E)

= mE; — mE =m(E; —E) (since mE < mE; <o) ... (ii)

Again
Ei = (Ei —Eij4+1) UEjq
= mE; = m(E; — Ej;1) + mEjy,
= mE; — mE;;; = m(E; — E;;;) (since E;;; € E;) ... (iii)

Therefore (i) reduces to

mE; — mE = )2, (mE; — mE;;;) (using (ii)and (iii))
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[ee]

= lim ) (mE; — mE;;,)
n—-oo
i=1

= lim[mE; — mE, + mE, — mE; ...— mE ;4]

n-—-oo

= lim[mE; — mE, 4]

n—-»oo

= mE; — rlli_r)?oEn+1

= mE = limmE,

n—oo
= m(NZ, E) = limmE,

1.39 Remark. Show that the condition m(E1) <co is necessary in the above theorems.

Solution. Let En = [N, «)

Then, E1= [ 1,00)

=m(E1) =m[1, ©) = oo

We show that the proposition of decreasing sequence does not hold in this case i.e. we want to show that

M(N7=y Ep) # lim (Ey)

Clearly, E,,; c E, foralln

Now, E, =[n, ) D [n, 2n]

= m(E,) =m[n, 2n] =n

= m(E,) =n

= limm(E,) = « (1)
n—-oo

Now, we claim that m(n}-; E,) = m(N,-; [n,))=0

For if, n,_; E,, # ¢ = thereexists x en;;_; E,

= X € [n,o)foralln e N

Let xe R, so by Archmedian property, we can find a positive integer n, such that
ng<x<ny+1

=  X€&[ng+ 1, «), a contradiction

2051 B = ¢

= m(Ny=, E,) =0 2

From (1) and (2), we have

m(N5=; E,) # lim(E,)
n—-oo
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S0, theorem does not hold in this case.

1.40 Theorem. Let {En} be an increasing sequence of measurable sets. i.e. a sequence with E,, C
E, .4 for each n. Let mE: be finite, then

m (U EL-) = limmkE, .
n—-oo

i=1

Proof. The sets E1, E>- E1, Es- Eo, ..., En- En+1 are measurable and are pairwise disjoint . Hence

is measurable and

But

E1 U (Ez _El) U -

Moreover,

Thus we have

E;U(E,—E)U..U(E,—E,_1) U ..

m[E; U (E, —E;) U ..U(E, —E,_1) U ..]

n
=mkE; + zm (E; — Ei-1)
=2
n

=mE; + lim ) m(E; —E;_;)
n—-oo
i=2

U (E, —E,_1) U ...is precisely UL, E,,

n n
Z m(E; —Ei_y) = Z(mEi —mE;_;)
i=2 i=2

= (mE, — mE,) + (mE; — mE,) + -+ (mE, — mE,_,)

= mkE, — mE;

= mkE; + lim[mE,, — mE;]

n—-oo

m

e
i=1

= lim mE,

n—-oo

1.41 Definition : The symmetric difference of the sets A and B is the union of the sets A-B and B-A .
Itis denoted by AB .

1.42 Theorem. If m(E; AE,) = 0 and E1 is measurable, then E> is measurable. Moreover mg; =

mE; .

Proof . We have

E2=[E; U (E; — E))] — (E1 — E3) (1)
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By hypothesis, both E> — E1 and E1 — E2 are measurable and have measure zero. Since E; and E>-E1 are
disjoint, E; U (E, — E;) is measurable and

m[E, U (E, — E;)] = mE; + 0 = mE,. But, since
E,—E, c[E; U (E; — Ey)],
it follows from (i) that E> is measurable and
mkE, =m[ E; U (Ey — Ez)] —m(E; — E3)
=mE; — 0 =mE;.
This completes the proof.

1.43 Definition. Let x and y be real numbers in [0,1]. The sum modulo 1 of x and y , denoted by
0
x + y,isdefined by

0 _{ x+yifx+y<1
X ty= x+y—-1lifx+y =1

0
It can be seen that + is a commutative and associative operation which takespair of numbersin [0,1) into

numbers in [0,1).

If we assign to each x € [0,1) the angle 2mx then addition modulo 1 corresponds to the addition of
angles.

If E is a subset of [0,1), we define the translation modulo 1 of E to be the set

0 0
E+y=[z|z=x+yforsomexeE].

If we consider addition modulo 1 as addition of angles, translation module 1 by y corresponds to rotation
through an angle of 2my.

We shall now show that Lebesgue measure is invariant under translation modulo 1.

1.44  Definition. Let x and y be real numbers in [0,1). The sum modulo 1 of x and y, denoted by
0
+ 1y, is defined by

0 .
<1
X 4 ={ x+yifx+y

x+y—1lifx+y =1

0
Clearlyx + y €[0,1)
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0
It can be seen that + is a commutative and associative operation which takes pair of numbers in [0,1)

into numbers in [0,1).
1.45 Definition. If E is a subset of [0,1), we define the translation modulo 1 of E to be the set

0 0
E+y=[z|z=x+yforsomexe€E].

We shall now show that Lebesgue measure is invariant under translation modulo 1.
0
1.46 Lemma. Let E c [0,1) be a measurable set. Then for each y € [0,1) the set E + y is measurable

0
andm (E +y) = mE.

Proof. Let E;= EN[0,1—y) and E2 = E n[1 —y,1). Then E1 and E are disjoint measurable sets
whose union is E, and so, mE = mE; + mEa.

we observe that

0 0
Ey +y={x +y:x€E}

_ x+yifx+y<1

_{x+y—1ifx+y > 1, X €
But for x € E;, we have x + y <1 and so

0
E, +y={x+yx €E;}=E  +y.
0
and hence E; + y is measurable. Thus
0
m(E; +y) =m(E; +y) = m(Ey),
0 0

since m is translation invariant. Also E, + y = E, + (y—1) and so E, + y is measurable and

0
m(E, + y) = mE,. But

0 0 0
E+y=(E1 +y)VU(E; +y)
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0 0 0
And the sets (E; + y) and (E, + y) are disjoint measurable sets. Hence E + y is measurable and

0 0 0
m(E +y) =m[(E; +y) VU (E; +y)]

0 0
=m(E; +y)+m(E; +y)

= m(Ey) + m(E)
= m(E).
This completes the proof of the lemma.
1.47 Theorem: Prove that there exists a non-measurable set in interval [0,1).

Proof: First we define an equivalence relation in the set 1= [0,1), By saying that x and y are equivalent
i.e., x ~ y ifand only if x-y is a rational number.

If X-y is a rational number, we say that x and y are equivalent and write x-y. It is clear that x ~ x; x ~
y=y~xandx ~Yy,y~z = x ~ z.Thus ° ~’ is an equivalence relation in .

Hence the relation ~ partitions the set | = [0,1) into mutually disjoint equivalence classes, that is, classes
such that any two elements of one class differ by a rational number, while any two elements of different
classes differ by an irrational number.

Construct a set P by choosing exactly one element from each equivalence classes. Now we claim that P
IS a non-measurable set.

0
Let <r; > i :0 be a sequence of the rational numbers in [0,1) with ro = 0 and define Pi = P + ri.

(translation modulo 1 of P)

Then Po=P.

We further prove that (i) P, N P; = @,i # j.
(i) Un P, =1[0,1)

Proof: (i) Let , N P; # @,i # j.

Letx € bNP.=>x € Pandx € P;

0
Thena p;,p; € P such that x = p;+1;
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0 0
= pitr =t

= p;-pj = 1;— 1; s a rational number.
= p;~pjis arational number.

1.€., Pi~Dp;j
=>p; and p; are in same equivalence class.

But P has only one element from each equivalence class, therefore we must have p; = p;i.e.,i =j

But # j . Hence a contradiction.

Hence P, N P; # @,i # j.

that is, < Pi>is a pair wise disjoint sequence of sets.

(ii) Clearly each P, c [0,1)

U; P; c [0,1). Let x be any element of [0, 1) = I

But | is partitioned into equivalent classes therefore x lies in one of the equivalence classes.

X is equivalent to an element say y of P.
X-y is a rational number say r;.
X-Y =i
X=Y I
0
= y + ;.

44333

0
XEP+Ti

= XE Pi
= X isinsome P;.

Therefore [0,1) € U P;
i

therefore,[0,1) = U p;.
i

Now we prove P is non-measurable.
Assume that P is measurable, then clearly each Pi is measurable.

0
And m(Pi)) =m <P + ri)

=m(P) for each i.
Therefore, m(U; P;) = Y;m(P;) = Xi20(P)
_{ 0 ifm(P)=0
o ifm(P)>0
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But

m (U Pi) =m[(0,1)] = 1(0,1) = 1, contadiction.
i
Therefore P is non — measurable set.

1.48 Example. The cantor set is uncountable with outer measure zero.

Solution. We already know that cantor set is uncountable. Let C, denote the union of the closed
intervals left at the nth stage of the construction. We note that C, consists of 2" closed intervals, each
length 37™. Therefore

m*'C, <2™3™" (~mC,=m(UE) = Zm*Fn)

But any point of the cantor set C must be in one of the intervals comprising the union Cy, for each n €
N, and as such C c C, forall n € N. Hence

n

m'C <m*C, < (g)
This being true for each n € N, letting n - oo gives m*C = 0.
1.49 Example. If E;1 and E2 are any measurable sets, show that
M(E,UE,)+m(E;NE,) =m(E;) + m(E,).
Proof. Let A be any set. Since E; is measurable,
m'A=m"(AnE;) +m*(4nE°).
We set A = E; U E, and we have
m*(E; U Ey) = m*[(Eq U Ey) N E;] + m*[(E; U E) NE;“]
Adding m(E; U E,) to both sides we have
m(E; UE,)) +m(E;NE,) =mE; + m*[(E; UE,) NE;°] + m(E; N E,) ...(1)
But
E, = [(E;VE) NE°] U (E U E).
Therefore
m{[(E; U E;) N E;°] U (E; UE,)} = mE,

Hence (1) reduces to

M(E,UE,)+m(E;NE,) =m(E;) +m(E,).
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1.50 Theorem. Let E be any set. Then given € > 0, there is an open set O > E such that m*0 <
m'E+ €.

Proof. There exists a countable collection [ In ] of open intervals such that

E c U,I,and
Z I(I) <m"E+€.
n=1
put 0 = U |
n=1

Then O is an open set and

= Z 1(I,) < m"E+€.
n=1

1.51 Theorem. Let E be a measurable set. Given €> 0, there is an open set
O D E such that m*(O\E) < €.
Proof. Suppose first that m E < co. Then by the above theorem there is an open set O o E such that
m'0 < m'E+ €
Since the sets O and E are measurable, we have
m*(0O\E) =m0 - m'E < €.

Consider now the case when m E = oo . Write the set R of real number as a union of disjoint finite
intervals; that is,

Then, if En = E N In, m(En) < oo . We can, thus, find open sets 0,, © E, such that

€
m*(On - En) < ﬁ

Define O = U O, . Clearly O is an open set such that O D E and satisfies

n=1
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0—E=DO 00 —E,)

n=1
Op
11— ) <€E.
m (En>

Mg ||C8

m*(0—E) <
1

=]
1l

1.52 F; and Gg Sets:

A set which is countable(finite or infinite) union of closed sets is called an Fs sets. Note: The class of all
Fs sets is denoted by Fs. This F stands for ferme(closed) and o for summe(sum).

Example: 1. A closed set.
2. A countable set
3. A countable union of Fy set.

4. An open interval (a, b) since
(a,b) = UpZila+ % b — %]and hence an open set.
Gs- set:

A set which is countable intersection of open sets is a Gs set.

Note: The class of all Gs sets is denoted by This G stands for region and &for intersection. The
complement of Fs set is a Gs set and conversely.

Example: 1. An open set in particular an open interval.
2. A closed set
3. A countable intersection of Gs set.

4. A closed interval [a, b] since
o 1 1
[a,b] = nzl(a—g,bﬁ'g).

1.53 Theorem. Let E be any set then
(@) Given ¢ > 0,3an open set O o Esuch that m*(0) < m*(E) + ¢
(b)3a Gg set G D Esuch that m*(E) = m*(G).

Proof: (a) By definition, m* (E) = inf )., l (I,), where E € U, I,

if m*(E) = oo, then clearly result is true. If m*(E) < 0, there is a countable collection {In} of open
intervals such that

EcU,Landm*(E) + € > Y,l(I,) Q)
LetO = E < U, I, thenOisanopensetand O D E
Also m*(0) =m*(E < Uy, I,)
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< > miy)

m*(0) < m*(E) + ¢ [from(1)]

(b) Take € = % vn € N Then by above part, for each n € N,3an open setO» > Esuch that

m*(0,) < m*(E) +l
n

Now define G =U;_; O,,then Gisa Gs set.
Also, since each On D E
therefore U;_; 0, D E thisimplies G D E
> m*(E) < m*(G) )
AlsoG =U;-, 0, S 0,Vn
m*(G) < m*(0,) foreach n
< m*(E) +-, foreachn
in limiting case, we have
m*(G) < m*(E) (3)
Then from (2) and (3), we have
m*(G) = m*(E).
1.54 Theorem. Let E be any set,then the following five statements are equivalent.
(i) E is measurable.
(i) For given € >0, 3anopenset O D E suchthatm*(O-E)<e
(iii) There existaset G in Gs with E < G, m*(G-E)=0
(iv) Forgivene>0,3anclosedset F c E suchthatm*(E-F)<e
(v) There existaset Fin F, with F c E, m*(E-F)=0
Proof. Ist we prove (i) implies (ii)
Let E be a measurable set.
Now two cases arrive
Case (i) m*(E) < oo.
By definition, for given €> 0,there is a countable collection {In} of open intervals such that
EcU,l,and m*(E)+e>Y,1([,)...... Q)
LetO=E c U,I,,thenOisanopensetand O o E
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Also m*(O) =m*(E € U, 1I,)

m*(0) < Xnm * (1)

m*(0) < m*(E) +¢ [from(1)]

m*(0)- m*(E) < ¢

O=(0—-E)UE

m*(0) = m*((0 — E) U E) = m*(O-E)+m*(E)

m*(0-E) = m*(0) - m*(E)

= m*(O-E)< ¢

Case (ii) If m*(E) = o0

We know that set of real number can be written as countable union of disjoint open intervals

R=U1n

n=1

=EﬂnL=J11n

n=1

Then E=ENR

= F = UEn,WhereEannIn

n=1

clearly each E, is measurable and m(E, ) is finite.
Because E, =ENnI, €I,
m*(En ) < I(ln) <co
Then by case (i), for each n € N, 3 an open set 0,, O E,, such that
m*(On- En) <
Let us define O = Ujp—, 0,
Then O is an open set containing E
Now (O-E) = Up=1 On — Un=1 By © Unoa (0 — Ey)
m*(0-E) <m*(Un=1 (On — En))
< Y= M (O — Ey)
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&€
S Z?‘Lozl Z_n

= &
= m*O-E)<e

Now (i) = (iii)

Let (ii) holds, then for each n € N, 3an open set 0,, © Esuch that
m*(On-E) <=

Let us define = N;-; 0, ,then Gisa Ggset.

Also sinceeach 0,, O E

therefore N;,-; 0, D E thisimpliesG 2 E
GE=N3-10,—ECO0,—E
m*(G-E) < m*(On-E) < %

Since n is arbitrary
m*(G-E) < 0
= m*(G-E) = 0.

Now (iii) = (i)

Let (iii) holds, then for given set E, 3 a Gs set G © E such that m*(G-E) =0
= G - E is measurable.

Now E = G- (G-E)

Now E is measurable being difference of two measurable sets.

Thus (i) & (ii) & (iii)

Now to show (i) = (iv)

Let (i) holds, and € > 0 be given

c
then by (ii), for given set E¢, 3 an open set G © E such that m*(G - E®) <e¢

C C
SinceG D E=GCE
Let F=G¢
then F is a closed set contained in E,

NOWE—F=En]g'zEfleGﬂEzG—Ec
Now m*(E-F) = m*(G-E°) <e¢
m*(E-F) <e.
To Show (iv) = (v)
Let (iv) holds, then for each n € N,3a closed set F, c E such that
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m*(E — Fn) <%

Let us define F = Uy -, F,

Then F is a E; set.

Also, sinceeach F, c E = U5 F, > FCE
NowE-F=E-U;-1E, € E—F,

= M*(E-F) < m*(E~Fn) <

= m*(E-F) <
Since n is arbitrary.
m*(E-F) <0
= m*(E-F) = 0.
Now (V) = (i)
Let (v) holds, then for general E, 3 a F; set F such that m*(E-F) =0
= E-F is measurable.
E=(E—-F)UF
= E is measurable.
This completes the proof.
(b) Take =~ Vn €N
Then by above part, for each n € N, 3 an open set 0,, © E such that
m*(On) < m*(E) +%
Now define G = Njy=, O, then G is a Gg_set.
Also since each 0,, o E
thereforeNy,-, 0, D E
thisimpliesG D E
= m*(E) <m*(G) ......(2)
Also G=N3-,0, € 0,Vn
m*(G) < m*(On) for each n < m*(E) +%, for each n in limiting case, we have
m*(G) < m*(E)...(3)
Then from (2) and (3), we have
m*(G) = m*(E).
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1.55 Theorem. Let E be a set with m* E < oo . Then E is measurable iff given € >0, there is a finite
union B of open intervals such that m*(E AB) < e.

Proof. Suppose E is measurable and let € > 0 be given. The (as already shown) there exists an open set

O o E such that m* (O- E) < % . As m*E is finite, so is m*O. Since the open set O can be written as the

union of countable (disjoint) open intervals {li}, there exists an n € N such that

S
— because m* O <)

SU(1)<S (Infactm* 0= = S 1(1) <0 = Y 1(1) <

i=n+1 2 i=n+1 i=n+1l 2
SetB=Uj-,;I;..ThenEAB=(E-B)uU(B-E)c(O-B)uU (O-E). Hence

m*(E A B) <m* (U, I;) + m*(O-E) <§ + § =¢.
Conversely, assume that for a given € > 0, there exists a finite union B = Ui-, I;. if open intervals with

m* (E AB) < €. Then using “Let € be any set. The given € > 0 there exists an open set O o E such
that m* O <m* E + € there is an open set O o E such that

mM*O<m*E+ e (1
If we can show that m* (O — E) is arbitrary small, then the result will follow from “Let E be
set. Then the following are equivalent (i) E is measurable and (ii) given € > 0 there is an openset O o E
such thatm * (O —E) < €”. Write S=U}~,(I; N 0). Then ScB and so
SAE=(E-S)u(S-E)c(E—S)u (B—E). However,
E\S=(En 0% U (ENB®) =E—B, because E — O . Therefore
SAEc(E—B)u(B—E)=EAB, and as suchm* (SAE) < € . However,
EcSU(SAE)
and so m*E<m*S+m*(SAE)
<m*S+e (i)
Also,
O—E=(0-S)U(SAE)
Therefore
m* (O\E)<m*O-m*S+ e
<M*E+e-m*S+e (using(i))
<M*S+e+e-m*S+¢e (using(ii))
<M*S+e+e-m*S+e
=3 €.
Hence E is measurable.



SECTION - I I

MEASURABLE FUNCTIONS

Measurable Function: An extended real valued function f defined on a measurable set E is said to be
measurable function if {x| f(x) > a} is measurable for each real number a.

2.1 Theorem. A constant function with a measurable domain is measurable.

Proof: Let f be a constant function with a measurable domain E and Let f : E— R be a constant function
i.e., f{(X) =k V x € E and k is constant.

To show that {x| f(xX) > a} is measurable for each real number a.

E, k>«
{X|f(x)> a}=3¢, k=«a
o, k<a

Since both ¢ and E are measurable, it follows that the set {x| f(x) > a} and hence f is measurable.

2.2 Theorem. Let f be an extended real valued function defined on a measurable set E, Then f is
said to be measurable (Lebesgue function) if for any real a« any one of the following four
conditions is satisfied.

(@) {x| f(x) > a} is measurable
(b) {x| f(x) = a} is measurable
(c) {X| f(x) < a} is measurable
(d) {x| f(x) < a} is measurable.

Proof: We show that these four conditions are equivalent. First of all we show that (a) and (b) are
equivalent. Since

) > a} = {Xf(x) < a}®

And also we know that complement of a measurable set is measurable, therefore (a) =(d) and
conversely.

Similarly since (b) and (c) are complement of each other, (c) is measurable if (b) is measurable and
conversely.

Therefore, it is sufficient to prove that (a) =(b) and conversely.
Firstly we show that (b) = (a).
The set {x| f(x) = a} is given to be measurable.

Now
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K100 > ay={J K002 a+3)

But by (b), {x| f(x) > a + %} Is measurable. Also we know that countable union of measurable sets is
measurable. Hence {x| f(x) > a} is measurable which implies that (b) =(a).

Conversely, let (a) holds. We have

KM= ay= () W02 a—2

n=1
The set {x| f(x) > « —%} IS measurable by (a). Moreover, intersection of measurable sets is also
measurable . Hence {x| f(xX) > a} is also measurable . Thus (a) = (b).
Hence the four conditions are equivalent.

2.3 Remark: We can say that f is measurable function if for any real number a, any of the four
conditions in the above theorem holds.

2.4 Lemma. If a is an extended real number then these four conditions imply that {x| f(x) = a}is
also measurable.

Proof. Let « be a real number, then
{Xf(X) = a}= {X|f(x) = a}n{X fX) <a}.

Since {x| f(x) = a} and {x| f(x) < a} are measurable by conditions (b) and (d), the set {x| f(x) = a}is
measurable being the intersection of measurable sets.

Suppose @ = oo. Then {x| f(x) = o} =[] {x|f(x)> n}
n=1
Which is measurable by the condition (a) and the fact intersection of measurable sets is measurable.
Similarly when = —oo, then
{X| f(x) = —oo} =ﬁ {x| f(x) < —n}, which is again measurable by conditions (c).Hence the

n=1

results follows.

2.5 Theorem: If f is measurable function on each of the sets in a countable collection {Ei} of
disjoint measurable sets, then f is measurable on E = U; E;.

Proof: Let E = U; E; . Then E is measurable being countable union of measurable sets is measurable.
Let a be any real number.

Consider the set {x€ E| f(x) > a} = U;{x € E;: f(x) > a} is measurable.

Because f is measurable on each Ei.

= U{x € E;: f(x) > a} is measurable.
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= {x€ E|f(xX) > a} is measurable.
Hence f is measurable on E.

2.6 Theorem: If f is measurable function on E and E; € E is measurable set then f is a measurable
function on Ei.

Proof: Let a be any real number.
Consider the set {xe E;| f(x) > a} = {xe E|f(x) > a}n E; is measurable.

2.7 Theorem. If f and g are measurable functions on a common domain E, then the set
A= {xe E: f(x)< g(x)} is measurable.

Proof. For each rational number r, define

A, ={XxeE: f(x) <r<g(x)}
Or we can write

A, ={xe E: f(x)< r}n {xe E: g(X)>r}
Since f and g are measurable on E, so the two sets on R.H.S. are measurable sets is measurable.
Now, we observe that
{xeE: f(x) <g(x)} = Ureo Ar

Since the rationals are countable, so A is countable union of measurable sets and so is measurable.
This proves the theorem.
2.8 Theorem. A continuous function defined on a measurable set is measurable.

Proof. Let f be a continuous function defined on measurable set E. Let a be any real number. We now
claim that {x € E : f(x) > «a } is closed.

Let A={x€E:f(X)=> a} 1)
To prove that A is closed, it is sufficient to show that A" < A. (2)
A’ being derived set of A.
Let x, € A’ be arbitrary element. Then x, € A" implies x, is limit point of A.
It implies that there exist a sequence {x,, } whose elements x,, € A such that

lim x, = x,
n—->oo

Moreover, f is continuous at x,; it follows that by definition of continuity x,, = x, implies f(x,)—
f(x0) 3)
By (2), we see that x,, € A foralln e N.

= f(x,) = a forall ne N.

= lim fx, > «
n—-oo
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= f(xo) = a by virtue of (3)
= x, € A by (1)

Further any x, € A" implies x, € A

=>A'CA

= Alis closed

=A IS measurable

=>{x € E: f(X) = a } is measurable.

Hence a continuous function f is measurable on E.

Converse of above theorem is not true, that is, A measurable function need not be continuous.
2.9 Example. Consider a function f: R = [0,1]

. (1ifo<sx <1
defined by f(x) = { 0 if otherwise *

Clearly function is not continuous since 0 is the point of discontinuity.
For any real number «,

o, a=1
{xeN:f(x)>a}:{ R, a<0
[01), a<0<1

Since R, ¢, [0,1) are measurable implies f is measurable function on E.

2.10 Theorem. Let f be a function defined on a measurable set E then f is measurable iff for any
open set G in R the inverse image f! (G) is measurable set.

Proof. Let f be a measurable function and let G be any setin R.  Since every open sets can be written
as countable union of disjoint open intervals.

Suppose, G = Uy I = Un(an, bn)
Then £1(G) = F(Un 1) = Un (£ ()}

= Un{x:f(x) € I}

= Uy {x: f(X) € (an by)}
but {x:f(X) € (an, b))} ={x:a, < f(x) < b,}

=X f(x) > ap3n {x: f(x) < by}
Since f is measurable function. So both sets on R.H.S. are measurable and hence
{x : f(x) € (a,, by)} is measurable.

Again f1 (G) is measurable. [ since countable union of measurable sets is measurable ]
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Conversely:- Let f1 (G) be measurable for every open set G in R. We have to prove that f is
measurable function.

Take G = (a, o) where «a is any real no.
Then f(a, ) is measurable
that is, {x : f(X) € (a, )} is measurable
that is , {x : f(x) > a} is measurable.
Thus f is measurable function.
2.11 Theorem. Let f be continuous and g be measurable function then fog is measurable.
Proof. Let a be any real number then
{x: fog(x) > a} ={x: f(g(x)) > a}
= {x:f(9(x)) € (a, )}
= {x:g(x) € f(a, )}.
Now, (a, =) is open subset of R and f is continuous implies f*(a, o) is open set.
Hence, it can be written as countable union of disjoint open intervals say
e, ) = Un In = Un(an, bn).
Therefore,
{x:fog(x) >a}= {x:9(x) € Unln} =97 (Un1ln)
=Ung™" (In)
=Un {x: g(x) € I}
=Un {x: g € (an by)}
=Un {x:a, < g(x) <byp)}
=Un {x: 8(x) > an)}n Uy, {x: g(x) < byp)}.

Since g is measurable function. Both sets on R.H.S. are measurable and their intersection is measurable.
Also countable union of measurable sets is measurable. Hence the result.

2.12 Definition. A function f is said to be a step function iff

f(x) =Ci, &1 <x < §;for some subdivision of [a, b] and some constants Ci .

a, a<x<c

Example: A function f : [0, 1] — R defined as f(x) = {ﬁ c<x<bh

where a, 8 are constant, f is a step
function.

Remark: Every step function is a measurable function.
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2.13 Theorem. For any real no ¢ and two measurable real- valued functions, f and g, the functions
f +c, cf, f+g, f-g, fgand f/g (g+ 0), |f| are all measurable.

Proof. We are given that f is measurable function and c ais any real number. Then for any real number a
{X| f(X) +c > a} = {X|f(x) > a —c}
But {x| f(x) > a — c} is measurable by the condition (a) of the definition. Hence

{x| f(x) +c > a} and so | f(x) +c is measurable.we next consider the function cf . in case c= 0, cf is
the constant function 0 and hence is measurable since every constant function is continuous and so
measurable. In case ¢ > 0 we have

{x| ¢f(x) > a} = {x|f(x) > =}, and so measurable.
In case ¢ < 0, we have {x| cf(x) > r} ={x| f(x)< E} and so measurable.

Now if f and g are two measurable real valued functions defined on the same domain, we shall show that
f+g is measurable. To show that it is sufficient to show that the set

{X| f(xX)+g(x) > a} is measurable.

if f(x) +9(X)> «a, then | f(x) > a — g(x) and by he cor. of the axiom of Archimedes there is a rational
number r such that a — g(x) <r<f(x)

since the functions f and g are measurable , the sets {x| f(x) > r} and {x| f(x) > a — r} are measurable.
Therefore, there intersection S;={x| f(x) > a — c}n {X| f(x) > a — r} also measurable.

It can be shown that {x|f(x)+g(x) > a } =U {S | r is rational}

Since the set of rational is countable and countable union of measurable sets is measurable , the set
U {S: | ris rational} and hence {x|f(x)+g(x) > a }is measurable which proves that

f(x) +9g(x) is measurable. From this part it follows that f- g = f (-g) is also measurable, since when g is
measurable (-g) is also measurable. Next we consider fg.

The measurability of fg follows that from the identity fg = % [(f+g)°—f>—g?], if we prove that f2

is measurable when f is measurable. For this it is sufficient to prove that
{X|€ E|f%(X) > a}, a is real number, is measurable.

Let a be a negative real number. Then it is clear that the set {x|f’(x) > a} = E (domain of the
measurable function f). But E is measurable by the definition of f. Hence {x|f2(x) > a} is measurable
when a < 0.

Now let & > 0, then {x|f(X) > a}= {X| f(x) > Va} u{x| f(x) < —Va}.
Since f is measurable, it follows from this equality that {x|f?(x) > a} is measurable for a > 0.

Hence 2 is also measurable when f is also measurable. Therefore, the theorem follows from the above
identity, since measurability of f and g imply the measurability of f+g.
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. f 1
nsider = =f. -
Conside g(gqt 0) p
First we have to prove thaté is measurable.

Consider the set {x : G) (x) > a} = {x : $ > a}

I( {x:g(x) >0}ifa=0
:4 {x:g(x)>0}n{x:g(x)<%}ifa>0

L{x:g(x) >0} U {{x:g(x) >0} N {x:g(x) < i}} ifa <0
Since g is measurable in each case ,i.e., {x : G) (x) > a}is measurable.

1.
= 5 is measurable.

. 1
Since f and 5 are measurable.

= 5 is measurable.

Now If f is measurable then |f| is also measurable.
It suffices to prove that measurability of the set {x| f(x) > a}= E (domain of f)
But E is assumed to be measurable. Hence {x| f(x) > a}={x| f(x) > a}u{x| f(X)< —a}

The right hand side of the equality is measurable since f is measurable. Hence {x| f(x) > a}is
measurable. Hence |[f| is measurable.

2.14 Remark: Converse of (vii) is not true.
Example: Let P be a non-measurable subset of [0, 1) = E

Define a function f: E-»> R as

- _{ 1 ifx€eP
“|-1 if xnot belongs to P
= fis not measurable because {x: f(x) > 0} = {x: f(x) = 1} = P which is non — measurable.
_ e _(pifa=1
Also, for any real a, {x: |f|(x) > a} = {x: |f(x)| > a} = {E' s

Since E and ¢ are measurable.
= {x:|f|(x) > a}is measurable.

2.15 Theorem. Let {f 7}, be a sequence of measurable functions. Then sup{fif,...,fa}, inf

{f1,f,...,fn}, sup,inf,lim f and lim f_are measurable.

Proof. Define a function M(x) = sup{f;(x), f2(x), ..., f(x)} we shall show that
{X| M(x)> a}is measurable. In fact {x| M(x)> a}= U{x: f;(x) > a}
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Since each fi is measurable, each of the set {x| fi(x)> a}is measurable and therefore their union is also
measurable. Hence {x| M(X)> a} and so M(x) is measurable. Similarly we define the function m(x) =
inf {f1,f2,,,,fn}, since {x| mM(x)< a} = UM{x: f;(x) < a}and

since {Xx| fi(x)< a}is measurable on account of the the measurability of fi, it follows that {Xx| m(x)< a}
and so m(x) is measurable . Define a function M’(x) = sup f_(x) = sup{fi,f2,,,,fn}

We shall show that the set {x| M’(x)> a} is measurable for any real a.
Now {X| M’(x)> a}= U —.{x: f,(x) > a} is measurable, since each f, is measurable.
Similarly if we define m’(x) = inf f (x), then {X| m’(xX)< a}= Un-,{x: f,(x) < a} and therefore

_inf sup

measurability of f, implies that of m’(x). Now since limf,, = 0 k> fie and

limf, = Szpklifnfk, the upper and lower limit are measurable.

2.16 Corollary: If {fn} is a sequence of measurable functions converging to f. Then f is also
measurable.

Proof: Since{fn} convergestof ,.e., lim f, = f
n—-oo
Then limf,, = limf, = lim f,
n—-oo
e, f= limf, =limf,

Hence f is measurable because limf,, and limf,, are measurable.

2.17 Corollary: The set of points on which a sequence {fn} of measurable functions converges is
measurable.

Proof: By above theorem limf,, and limf, are measurable.

= Lmf, — limf, is measurable.
Therefore, {x: [ﬁfn — limf,|(x) = a} is measurable Va.
In Particular, for a = ¢
{x: [ﬁfn — limf; |(x) = 0} is measurable.
ie.,
{x: [ﬁfn(x) = li_mfn(x)]} is measurable.
i.e., set of these points for which{f,}converges is measurable.

2.18 Definition. Let f and g be measurable functions. Then we define
f*=Max (f, 0)
f~ =Max (-, 0)

f+g +1f-gl

fvg= i.e. Max (f,g) and

f+g9-1f-gl

fAg = i.e. min (f, g)
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2.19 Theorem. Let f be a measurable function. Then % and f~ are both measurable.

Proof. Let us suppose that f > 0. Then we have

4

f=1f —f"
Now let us take f to be negative.

Then f = Max (f,0)=0,

+

f = Max (-f, 0) = -f
Therefore on subtraction f = 1t —-f-
In casef =0, then f= 0, f~=0.
Therefore f = f —f~

Thus for all f we have, f = f —-f
Also adding the components of (i) we have
f=1Ifl = f +f"

since f is positive. And from (ii) when f is negative we have

+

f+f~ =0-f~ =f" =|f|
In case f is zero, then

4

f +f~ =0+0=0=f

That is for all f, we have

fl = +f

Adding (iv) and (viii) we have f + |f| = 2 ? ,
r_1

f=_(f+If])

Similarly on subtracting we obtain f = %(f —If])

(i)

(iii)

(v)

(vi)

(vii)

(viii)

(ix)

(x)

Since measurability of f implies the measurability of | f | it is obvious from (ix) and (x) that % and f are

measurable.
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2.20 Theorem. If f and g are two measurable functions, then f vg and f Ag are measurable.

Proof. We know that

f+g+|f-gl
2

fvg =

f+9 -If-4|
2

fAg=

Now measurability of f _ measurability of |fl. Also if f and g are measurable, then f+g, f-g are
measurable. Hence fvg and f Ag are measurable.

1xeE
2.21 Definition. Characteristic function of a set E is defined by r¢ ., = {0 X & E}

This is also known as indicator function.

2.22 Examples of measurable function

1xeE
Example. Let E be a set of rationals in [0,1]. Then the characteristic function y y, :{O X g E} IS

measurable.

1xeE
Proof. For the set of rationals in the given interval, we have ¢, = {0 . E}
X &

It is sufficient to prove that { X | ygx,> «} is measurable for any real a.
Let us suppose first that @ = 1. Then { x| y¢,> a} ={X| x> 1}

Hence the set { X | x¢x,> a} is empty in this very case. But outer measure of any empty set is zero.

Hence for & > 1, the set { X | y¢,> a}and so yg y, is measurable .

Further let0< a < 1. Then { x| x¢«,> a} =E

But E is countable and therefore measurable. Hence g, is measurable.

Lastly, lete < 0. Then {X| x¢,> a} =[0,1] and therefore measurable. Hence the result.

2.23 Theorem. Characteristic function y, is measurable if and only if A is measurable.
ILxeA

Proof. Let A be measurable. Then y,(X) =
0,xeA

Hence it is clear from the definition that domain of y, is A UA® which is measurable due to the
measurability of A. Therefore, if we prove that the
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set {X | x> @} is measurable for any real a, we are through.

Let a =0. Then {X | x5, > }={X| xap = 1}=A(by the definition of Characteristic function.)
But A is given to be measurable. Hence for @ =0. The set {x | z,, > a } is measurable.

Now let us take & < 0. Then {x | z,,,> }= AUA®

Hence {X | xa, > } is measurable for a < 0 also, since A UAC has been proved to be measurable.
Hence if A is measurable, theny, is also measurable. Conversely, let us suppose that y,., Is

measurable. That is,

the set {X | xx, > a } is measurable for any real a.
Leta =0. Then {X| xp> }={X| 1apy=13=A

Therefore, measurability of{x | x,.,> } implies that of the set A for @ =0 . Now consider a < 0. Then
{X| Za> }= AUAC

Thus measurability y,,, of implies measurability of the set AUAC which imply A is measurable.

2.24 Simple Function: Let f be a real valued function defined on X. If the range of f is finite. We say
that f is a simple function.

1xeE
Let ESX and put pg ) = 0xeE

Suppose the range of f consists of the distinct number ¢y, co, ..., cn.
LetEi={x:f(x) =¢}(i=1,2,..,n)
Then f= Y1, ¢ Xz,

i.e., every simple function is a finite linear combination of characteristic function. It is clear that f is
measurable if and only if the sets E1, Ea, ..., En are measurable.

2.25 Remarks:

1. Every step function is a simple function.

2. Every simple function is measurable.
Proof: Let f be a simple function defined as above.
Then we have

f(x) = X1 ¢i x5, (%)
=C1XE, (x) + C2XE, (x)+ -+ CnXEn(x)
“f(x) = c,x €EE;
f(x) = cx €EE,
~f(x) = c,x € E
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~Ep={xf(x) = ¢}

Since each Ej is measurable. Thus yg, is measurable because y, is measurable if and only if A is
measurable.
Hence f is measurable.

3. Characteristic function of measurable set is a simple function.

4. Product of the simple function and finite linear combination of simple functions is again a
simple function.

2.26 Theorem. (Approximation Theorem). For every non-negative measurable function f, there
exists a non-negative non-decreasing sequence {fn } of simple functions such that }lilgofn(x) = f(x),

X €EE

In the general case if we do not assume non-negativeness of f , then we say For every measurable
function f, there exists a sequence {f, }, n €N of simple function which converges (pointwise) to f . i.e.
“Every measurable function can be approximated by a sequence of simple functions.”

Proof. Let us assume that f(x) =0 and x €E . Construct a sequence

i-1 i-1 i
—_— —< e P — n
fn(x) = {zn Jor = < f(x) <z fori=12,n2

} for every n eN.
n, f(x)=n

If we take n =1, then

f(x) = {%,for %Sf(x) <éfori = 1,2}
1, f(x)=1
0,for 0 < f(x) <
1 forf(x)=>1
Similarly taking n = 2, we obtain

i-1

fo(x) = {T,for i% <f)< i fori= 1,2,,,8}
2, f(x)=2

That is,

(0 for 0 < f(x) <i\

Lfor <<t

T for T <fx)<2

\ 2forf(x)=2 J
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Similarly we can write f3(x) (x) and so on. Clearly all f, are positive whenever f is positive and also it is
clear that f, < fn+1. Moreover f, takes only a finite number of values. Therefore {f,} is a sequence of
non-negative, non decreasing functions which assume only a finite number of values.

Let us denote
Eni=f_1[i_71,%]={xEE| i_TISf(x)<é}
and
En=f"'[n.o) = {x € E|f(x) =2 n}

Both of them are measurable. Let

n2ﬂ -

f.=>] o e, +ny.  foreveryneN.

i=1

n2n -
-1 . : .
Now Z?;(En_ is measurable, since y. has been shown to be measurable and characteristic
i:]_ 1 1

function of a measurable set is measurable. Similarly y. is also measurable since . is

measurable. Hence each f, is measurable. Now we prove the convergence of this sequence.

Let f(x) < co. That is f is bounded. Then for some n we have

i-1 i
wSf) <z

i-1 i-1 i—-1 i
w o S <a

271
i—1 i
= 0 Sf(X) - Z_n < 2_’”‘
- 0 <f(x) - fa(x) < 5 (by the def of , (x))
- fx) < fo (X) < &

or|f(x) — fn(x)] Szin< evn=>mand x € E.

since m does not depend upon point.

Therefore, convergence is uniform.

Let us suppose now that f is not bounded. Then f(x) = oo
= f(x) >n foreveryn € N

Butfn (X) =n

= lim fo(x) = o0 = f(x).
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When we do not assume non-negativeness of the function then since we know that f and f

are both non-negative, we have by what we have proved above

f

lim g, () ()

iﬂﬁ@%m (ii)
where @,,'(x) and @,,"' (x) are simple functions. Also we have proved already that
f=f —f"
Now from (i) and (ii) we have
f—f~ = limg () —limg,"()
= lim(g,(x) - ¢, "(x))
= limg, (x)

(since the difference of two simple functions is again a simple function). Hence the theorem.

We now introduce the terminology “almost everywhere” which will be frequently used in the Sequel.
2.27 Definition. A statement is said to hold almost everywhere in E if and only if it holds
everywhere in E except possibly at a subset D of measure zero.

(&) Two functions f and g defined on E are said to be equal almost everywhere in E iff
f(x) =g(x) everywhere except a subset D of E of measure zero.
(b) A function defined on E is said to be continuous almost everywhere in E if and only
if there exists a subset D of E of measure zero such that f is continuous at every point of ELID.

2.28 Theorem. (a) If f is a measurable function on the set E and E; S Eis measured set, then f is a
measurable function on E;.

(b) If fis a measurable function on each of the sets in a countable collection{E; } of disjoint measurable
sets, then f is measurable.

Proof. (a) For any real a, we have {x € E;, f(X) > a } = { X €E; f(X) > a } NE1. The result follows as
the set on the right-hand side is measurable.

(b)Write E = U E. , Clearly, E, being the union of measurable set is measurable. The result now
i=1

follows, since for each real a, we have

E={xeEf(x)>a}={xel JE fx)>a}

i=1
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2.29 Theorem. Let f and g be any two functions which are equal almost everywhere in E. If f is
measurable so is g.

Proof. Since f is measurable, for any real, the set {x | f(x) > } is measurable. We shall show that the set
{x | g(x) > }is measurable. To do so we put

Ei={x|f(x)> }and E> = {x| g(X) > a }. Consider the sets
E:-E>and E» - Es.

“x€E —E,=x€Eandx & E,

These are subsets of {x: f(x) # g(x)} ) > a,g(x) » a = f(x) # g(x)

Butf=ga.e.

= mix:f(x) # g(x)} =0
Ey —E, S {x: f(x) # g(x)}
M(E; — Ez) <mf{x: f(x) # g(x)} =0
= m(E; —E,)<0Butm(E; — E;)>0
= m(E; —E;)=0
Similarly m(E, — E;) =0
~M(E; —E;) =0=m(E; — Ey)
= (E; — E;) and (E, — E;) are measurable.
= Ex=[E1U(E2-E1)]-(E1-E2)

Since E1, E2-Eiand ( E1 - E2)© are measurable therefore it follows that E2 is measurable. Hence the
theorem is proved.

2.30. Corollary. Let {fn} be a sequence of measurable functions such that lim f = f almost

n—oo

everywhere. Then f is a measurable function.

Proof. We have already proved that if {f,} is a sequence of measurable functions then lim f  is

n—ow

measurable. Also, it is given that lim f = f a.e. Therefore, using the above theorem, it follows that f is

nN—oo

measurable.
2.31 Definition: (Restriction of f to E1)

Let f be a function defined on E, then the function f; defined on E; contained in E .i.e., E1 € E by fi(x) =
f(x), x € Eq is called restriction of f to E; and denoted by f/ E:.

2.32 Exercise : Let f be a measurable function defined on E, then its restriction to E1 is also
measurable where Ei is a measurable subset of E.

Solution : Let fy =/ Ey i.e., fy is restriction of f to E;.
Let a be any real number.

{XeE fixX)>a}={x€EfX)>a} [~ f1 = f on E;]
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={ x €E: f(x) > a } N Ei1is measurable on E and E; is also measurable and
intersection of measurable sets is measurable. Hence f1 is measurable on Ex.

2.33Exercise:Let f be a measurable function defined on where E; and E, are measurable.

Then the function f is measurable on E,UE, iffEL andEL are measurable.
1 2

Solution: Let f1 = f/ E; and Let f, = f/ E>
LetE = E,UE,

Clearly E is measurable because E; and E, are measurable. Suppose f is measurable on E then by
previous exercise f1 is measurable on E; and f, is measurable on Eo.

Conversely, Let @ be any real number.

Therefore

{XeE:f(X)>a}={x€ EUE,:f(X)>a }
={x€Eif(X)>a}Uu{x€EExrf(X)>a}
={x€E1fiX) > a U { X €EEx: f2(X) > a }

because f1 is measurable on E1 and f2 is measurable on Ea.

= fis measurable on E = E,UE,.
2.24 Theorem. If a function f is continuous almost everywhere in E, then f is measurable.
Proof. Since f is continuous almost everywhere in E, there exists a subset D of E with m*D =0
such that f is continuous at every point of the set C = E-D.
To prove that f is measurable, let a denote any given real number.
Consider the set {x €E | f(x) > } = B(say)
We have to show that B is measurable. If B N\C = ¢, then B € D.
m*(B) <m*(D)=0.

m*(B) = 0.
B is measurable.
Now suppose that B NC # ¢. For this purpose, let x denote an arbitrary point in B NC. Then x €
Band x € C =f(x) > a and f is continuous at x. Hence there exists an open interval Ux
containing X such that f(y) > a hold for every point yof EnUx. Let U =U,epnc Ux-
Since x EE NUx cB holds for every x eB NC, we have
B NCcE nUx cB. This implies B = (E nU) u(B ND). As an open subset of R, U is
measurable. Hence E NU is measurable. On the other hand, since m*(BND) <m*D =0 ,BND is
also measurable. This implies that B is measurable. This completes the proof of the theorem.

4330

2.25 Littlewood’s three principles of measurability
The following three principles concerning measure are due to Littlewood.
First Principle. Every measurable set is a finite union of intervals.

Second Principle. Every measurable function is almost a continuous function.
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Third Principle. If {f,} is a sequence of measurable function defined on a set E of finite measure and if
fn (X) =f(x) on E, then f, (X) converges almost uniformly on E.

First of all we consider third principle. We shall prove Egoroff’s theorem which is a slight modification
of third principle of Littlewood’s.

2.26 Theorem. Let E be a measurable set with finite measure and {f,} be a sequence of measurable
functions defined on a set E such that

fn (X) =f(X) for each x € E.

Then given £ >0 and 8 > 0, there corresponds a measurable subset A of E with m(A) < é and an
integer N such that |f,,(x) — f(x)|< eVx €E—-Aandn = N.

Proof: Consider the sets G, = {x € E:|f,(x) — f(x)| = &}
Now since f, and f are measurable.
So the sets G,,'s are also measurable.
Now define E, = Up—i Gn-

={x:x € G, for somen = k}

={x:x €E,|fp(x) — f(x)| = € for somen = k}
We observe that E,,; € Ej.
On the contrary, we assume that for each x € E,V k.
Then for any fixed given k, we must have

Er ={lfh,(x) — f(x)| = € for somen = k}

But this leads to f;,,(x) »f(x). a contradiction.
Hence for each xX€ E there is some Ej suchthat x € E;, = N}, Ex =0

Now measure of E is finite, so by proposition of decreasing sequence, we have

[0e]

lim m(E,) =m (ﬂ En) —m(@) =0

n=1
1{1_{{)10 m(E,) = 0.
Hence given § > 0, 3 an integer N such that m(E,) < Vv k > N.
In particular putk =N
m(E,) < 6
m{x:x €E,|f,(x) — f(x)| = efor somen = N} < §
If we write A = E,,, then m(A) < § and
E-A={x:x € E,|f,(x) — f(x)| < efor alln = N}



Measurable Functions 45

In other words,
lfu(x) — f(x)| <eforalln=Nand x eE — A
This completes the proof.

2.27 Definition: A Sequence {fn} of functions defined on a set E is said to converge almost everywhere
tofif limf (x)=f(x) Vx € E—E; whereE; C E,

m(E;) = 0.

2.28 Theorem. Let E be a measurable set with finite measure and {fn} be a sequence of measurable
functions converging almost everywhere to a real valued function f defined on a set E. Then given
>0 and § > 0, there corresponds a measurable subset A of E with m(A) < é and an integer N
such that |[f,(x) — f(x)| < eVx €EE—Aandn > N.

Proof: Let F be a set of points of E for which f,,(x) »f. Then m(F) = 0.
Since f, (X) =f(x) almost everywhere, then
fn(X) >f(X) Vx € E — F = E;(say)

Now applying the last theorem for the set E;, we get a set A1 € E1 with m(A1) < § and an integer N
such that |f,(x) — f(x)| < eVx €E;—Ajandn > N.

Now the required result follows if we take
A = A, UF as shown below.
m(A) =m(A; UF) =m(4,) + m(F) =m(4,)) +0=m(4,) <&
AlSOE —A=E—-(A4,UF)=En (4, UF)¢
=ENA“NFS =(ENF)NAS
=(E-F)NA‘=E NA, =E — A,
e, E-A=E, — A

Hence we have found a set A € E with m(A) < § and an integer N such that |f,,(x) — f(x)| < eV x €
E—Aandn > N.

2.29 Definition: A Sequence {fn} of functions is said to converge almost uniformly everywhere to a
measurable function f defined on a measurable set E if for each € >0, 3 a measurable set A € E with
m(A) < e such that and an integer N such that f,, converges to f uniformly on E — A.

2.30 Theorem.(Egoroff’s Theorem). Let {fn} be a sequence of measurable functions defined on a set E
of finite measure such that f, (x) —f(x) almost everywhere. Then to each n> 0 there corresponds a
measurable subset A of E such that m (A) <7 such that fn(x) converges to f(x) uniformly on E-A.

Proof. Applying last theorem withe = 1,6 = 77/2

We get a measurable subset A1S E with m (Az) < 77/2 and positive integer N1 such that
|fn(x) —f(x)| <1foralln>=N,and x € E;(=E — A;)

Again taking & = % 5= 77/22
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We get another measurable subset A>< E1 with m (Az) < 77/22 and positive integer N2 such that

1
|fu(x) — f(x)] < > foralln> N, and x € E,(= E; — A;)
Continuing like that at kth stage, we get a measurable subset AkS Ek.1 with

m (Ax) < n/zk and positive integer N such that

1
|fu(x) — f(x)] < " foralln > Ny and x € Ei.(= Ex_1 — Ag)

Now we set A = Up—; Ak

Then we have

M(A) < Ty mA) < 2o g = 0. Bz =1

Also E-A = E- Ug Ak = NilEx-1 — Akl = Ny Ex[ Ex—1 — A = Ey]
Letx € E — A,thenx € E,V k and so |f,(x) — f(x)]| < %Vn > Ny.

Choose k such that% < &£ so that we get

lfu(x) — f(x)|<eVx€E—Aandn = N, = N.
This completes the proof of the theorem.

Now we pass to the second principle of Littlewood. This is nothing but approximation of measurable
functions by continuous functions. In this connection we shall prove the following theorem known as
Lusin Theorem after the name of a Russian Mathematician Lusin, N.N.

2.31 Lusin Theorem: Let f be a measurable real valued function defined on closed interval [a,b],
then given 8 > 0,3 a continuous function g on [a, b|such that

mix: f(x) # g(x)} <9.
Proof: First we prove two lemmas.

Lemma 1. Let F be a closed subset of R, then a function g: F— R is continuous if sets {x: g(x) <
a} and {x: g(x) = b} are closed subsets of F for every rational a and b.

Proof: Let {x: g(x) < a} and {x: g(x) = b} are closed subset of F.
= {x: g(x) > a} n {x: g(x) < b} is open subset of F.

de., {x:a < g(x) < b}isopen.

i.e., {x:g(x) € (a,b)}isopeninF.

i.e.,, g71(a,b)is openinF.

Let O be any open set in R then O can be written as countable union of disjoint open intervals with
rational end points.
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Let O = Up=,(an, by)

Then g=10 = g~ (UpZ1(@n, bn)) = Urz1 9~ (an, bn)

Since g~1(a, b)is open and countable union of open set is open.

= g~ 1(0) is open = g is continuous.

Lemma 2. Let f. [a, b] —>R be a measurable function, then
6 > 0,3 aclosed subset F of E = [a,b]suchthat m(E —F) < § and%is continuous.
Proof: Let {r;,} be a sequence of all rational numbers.

Forne N, take 4,, = {x: f(x) =1}

And A, = {x: f(x) < 1}

Clearly each 4,, andA,,” are measurable [ f is measurable]

Then 3 closed sets B, ¢ A,, and B, c A,," such that

and m(4,," — B,") <

m(4, — B,) < n 3

2n.3
LetD = [U?lo=1(An - Bn)] U [U?Lo=1(An* - Bn*)]
Clearly D is measurable.

Therefore m(D) < Yo, m(4,, — B,) + Yoy m(4," — B,")

o _6 w _6
m(D) < 211:1 2n 3 + ZTl:l 2n3
6,5 _2
3 3 3
26

Now E and D are measurable.

= E-D is measurable.
Then for given § > 0,3 a closed set F € E — D suchthat m(E — D — F) < g
Now E-F =DuU (E — F — D)
2 mEF) =mD)+mE-F-D)<Z+2= 6
Leth=f/F
To show that h is continuous on F.
For rational number 7;,,

{x:h(x)<n}={x:f(x) <m}NF
=4,"nF=[(4,"-B,)YUB,)|nF
=[((4x" =B, ) NnF)|U[B, nF]
=@ U |[B,” NF]
=B,"NF

given
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O(An - By) D(An* - B,")
n=1 n=1

= (An* _Bn*) cD
wFCE-D=FnD=0.
{x:h(x) <n}=B,"NF

D= U

Since B,," is closed in E = [a, b].
B, NFisclosedinF.
= {x:h(x) < n,}isclosed inF.
By lemma 1, h is continuous.
So f/F is continuous.
Lusin Theorem:(Proof):- We have

f:[a, b]— R is measurable function, then by lemma(2), for given § > 0,3 a closed set F C E
such that m(E —F) < §and h = %is continuous.

Now using result “Every real valued continuous function defined on a closed subset of a real
number can be extended continuously to all real numbers.”
So h can be extended to continuous function h*: R— R.
Let g :[a, b]— R, g is continuous
T and forx € F,g(x) = f(x)on F.
and{x €EE:f(x) # g(x)} S E—-F
m{x €E:f(x) # g(x)} <m(E —F) <8.

“Convergence in Measure”

The notion of convergence in measure is introduced by F.Reisz and E.Fisher in 1906-07.
Sometimes it is also called approximate convergence.

2.32 Definition. A sequence < f, > of measurable functions is said to convergence in measure to f on a
set E, written as f;, 3f onE,

If given 6>0, 3m € N such that forall n > m, we have
mix||f(x) = fu()| = €} < 6.
Or lim m{x||f(x) — fu(x)| = €} =0
n—->0o
This means that for all sufficiently large value of n, functions f,, of the sequence < fn > differ from the

limit function f by a small quantity with the exception of the set of point whose measure is arbitrary
small (<9).

2.33 Theorem: If sequence {f,} converges in measure to the function f, then it converges in
measure to every function g which is equivalent to the function.

Proof: For each £ > 0, we have

i lfn() =gl 2 &}  {x: f(x) # g}V {x: |fo(x) = fF(O)] = €}
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Since g is equivalent to f, then we have
mix: f(x) # g(x)} = 0.

mix: |fo(x) — g0 2 e} < mfx: f(x) # g0} + mlx: [fo(x) = f(x)| = €}
s mix: |fu(x) = f(x) 2 €} <6

m
=fn—g
Hence the result.

2.34 Theorem: If sequence {f,} converges in measure to the function f, then the limit function f is
unique a.e.

Proof: Let g be another function such that f,, ﬁg.

Since |[f — gl < |f — ful + | — gl
Now we observe that for each € > 0,

(e lf@) = 900l 2 &) € (1,00 - Fl 2 S} U {1, - 900l 2 5

Since by proper choice of &, the measure of both the sets on the right can be made arbitrary small, we
have

mix: |f(x) = g(0)| = €}=0

= f =g almost everywhere. Hence the proof.
2.35 Theorem: Let {f,} be a sequence of measurable functions which converges to f a.e. on

X. Then f, = f on X.
Proof: For each ne N and € > 0, Consider the sets
Sn(e) = {x € X:[fu(x) — f(x)| = €}

Let 6 > 0 be any arbitrary number, then 3a measurable set A c X
With m(A) < & and the number N such that

Ifn(x) —f(x)|<evxeX—-—Aandn=N
Then it follows that S,,(¢) c AVn >N
m(S,(e)) <m(A) < 6vn=N
lim ‘m(S,(e)) = 0

Hencef,, T)f on X.

2.36 Remark: The converse of the above theorem need not be true i.e, convergence in measure is
more general than a.e. infact there are sequence of measurable functions that converges in
measure but fails to converge at any point.

44

To affect we consider the following example
fn:10,1] > Ras

1ifxe k k+1]
fn(x) = { X E |50
0,otherwise
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Letn=k + 2t where 0 < k < 2¢.

Let € > 0 be given. Choose an m € N such that % <¢

Then m{x: |f,,(x) — 0] = €} = m{x: |f,,| = €}

11 [tm=k+2t <2t 428
<= ¢ 1 2 ™
2t " on <220, <=

2 n

2
<—<eVn=>2m
m

= f, converges in measure to zero for Xe [0, 1]

2 i f,5[0,1]
fn (x) has value 1 for arbitrary large value of n and so it does not converge to zero a.e. because
on taking n very large, we get 2 large and hence number of subintervals of type (*) increase and
possibility of f,,(x) = 1 is more.

2.37 Theorem (F. Riesz). “Let < fn > be a sequence of measurable functions which converges in
measure to f. Then there is a subsequence < f;, > of < fn > which converges to f almost
everywhere.”

Proof. Let f, ﬁf.

Let us consider two sequences {%} and {zin} of real numbers such that
1 - 1
;—>0asn—>ooas 2—n=1<00.

n=1
We now choose a strictly increasing sequence {n; } of positive integer as follows
Let n, be a positive integer such that
1
m({x: |fn1(x) - f(x)| > 1}) < 3
Such a number n, exists since in view f, ﬁf foragivene; =1 > 0 and

61 = EPN 0,3 an integer nysuch that
2

1
m({: () — f@I 2 1) <5vnzm
In particular for n = n;.

Similarly, Let n, be a positive number such that n, > n, and

m ({x: |fn2 ()= f()| = %}) < Ziz and so on.

Continuing in this process, we get the positive numbern;, > n;,_;

m({x: |fnk(x) —f(x)| > %}) < Zlk
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Now set Ex = U2, {x: |fo, () = (0| = l}k €N.
Then it is clear that {E } is decreasing sequence of measurable sets.
Therefore m(E) = zlim m(Ey)
But m(E,) =m {U;”zk {x: |fni(x) —f)| = %}}
0 1
< e emix:|f, (0 - f()] 2 3}
<Z‘l?‘;k%—>0ask—>00

1
- 2k—-1

Hence m(E) = 0.

Thus it remains to be verified that the sequence < f,,, > converges to f on X-E.

So let x, & E. Then x, & E,,, for some positive integer m.

i.e., x, & {x: |/ ) — f(0)] = %},k >m

1
= [fu () = fOO| <7k zm
But% — 0ask— oo
Hence zlim o (X0) = £ (x0).

Since x, € X — E was arbitrary, it follows that

lim fy, () = f(x) for each x € X — E and s0 {fn,} converges to f a.e.

This completes the proof.
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THE LEBESGUE INTEGRAL

Lebesgue integration is an alternative way of defining the integral in terms of measure theory that is
used to inte grate a much broader class of functions than the Riemann integral or even the Riemann-
Stieltjes integral. The idea behind the Lebesgue integral is that instead of approximating the total area by
dividing it into vertical strips, one approximates the total area by dividing it into horizontal strips.

3.1 The shortcomings of the Riemann integral suggested the further investigations in the theory of
integration. We give a resume of the Riemann Integral first.

Let f be a bounded real- valued function on the interval [a, b] and let
a=¢§ <& <-<g =b

Be a partition of [a, b]. Then for each partition we define the sums
S =& — & M

and s = YL (& — §,_, )m;

where

Mj= Sup f(x),m;= : inf f(x)

&_, <x<§ i1 <X<§;

We then define the upper Riemann integral of f by

R [2f(x)dx = inf S

With the infimum taken over all possible subdivisions of [a, b].
Similarly, we define the lower integral

R [ f(x)dx = supss.

The upper integral is always at least as large as the lower integral, and if the two are equal we say that f
is Riemann integrable and call this common value the Riemann integral of f. We shall denote it by

R [ f(x)
To distinguish it from the Lebesgue integral, which we shall consider later.
By a step function we mean a function y which has the form

vx) =¢,§_; <x<§

for some subdivision of [a, b] and some set of constants Ci.
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The integral of y(x) is defined by
b n

Rf y(x)dx = z Ci (&i - &i_l).

a

With this in mind we see that
Rfah f(x)dx = inf fabw(x) dx

for all step function y(x) > f(x).
Similarly,

R 2 f(x)dx = sup [’ b (x) dx
for all step functions ¢ (x) < f(x).
3.2. Example: If

1 if x is rational
f =
() { o if x irrational

then R [Zf(:)dx = b —a and R [J f(x)dx = 0.
Thus we see that f(x) is not integrable in the Riemann sense.

3.3. The Lebesgue Integral of a bounded function over a set of finite measure

The example we have cited just now shows some of shortcomings of the Riemann integral. In particular,
we would like a function which is 1 in measurable set and zero elsewhere to be integrable and have its
integral the measure of the set.

The function y defined by

_ { le E
E ox ¢E
is called the characteristic function on E. A linear combination
G(x) = LIy a7 (%)
is called a simple function if the sets E;i are measurable. This representation for ¢ is not unique.
However, we note that a function ¢ is simple if and only if it is measurable and assume only a finite
number of values. If ¢ is simple function and [a1 , a2 ,..., an ] the set of non- zero values of ¢ , then

d) = ZaiXAi )

where A; = { {x| $(x) = a;} . This representation for ¢ is called the canonical representation and
it is characterized by the fact that the A; are disjoint and the a; distinct and non- zero.

If ¢ vanishes outside a set of finite measure, we define the integral ¢ by

n

Jq)(x)dx = ZaimAi

i=1
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when ¢ has the canonical representation ¢ = X, ajx, . we sometimes abbreviate the expression for

this integral to [ ¢. If E is any measurable set, we define fE(D =/ - %

It is often convenient to use representations which are not canonical, and the following lemma is useful.
3.4. Lemma. If Eg, E»,...,E, are disjoint measurable subset of E then every linear combination

¢ = X, CiXg,

With real coefficients ¢y, Co,..., cn is a simple function and

J o =2, cmE; .

Proof. It is clear that ¢ is a simple function. Let a1, a,..., an denote the non- zero real number in ¢ (E).

Foreachj=1,2,...,n. Let
ci=a]-
Then we have A; = ¢~ 1(a)) = {x|¢x) = aj}

and the canonical representation

n

¢ = Z Ai%a

j=1
Consequently, we obtain
J &= ELiajmA;
= Yjtiam  [Ug=a, Ei]
=Yit13 Zg:aj mE; ( Since E; are disjoint, additivity of measures applies )

n

z ijEi

=1
This completes the proof of the theorem.

3.5. Theorem. Let ¢ and y be simple functions which vanish outside a set of finite measure. Then
f@b+by)=afd+bfy and, ifp > yae,then [d = [y

Proof. Let {Ai} and {Bi} be the sets which occur in the canonical representations of ¢ and y. Let Ag
and Bo be the sets where ¢ and y are zero. Then the sets Ex obtained by taking all the intersection A; N
B; form a finite disjoint collection of measurable sets, and we write

N
q) = Z akXEk
k=1
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N
V= z by,
k=1

and so

N

N
ap+by=a ) ag +b ) bk,
k=1

k=1
N

N
= Z aakXEk + kaEk
k=1 k=1

N
= ) (@ax + b,
k=1

Therefore

N
ad + by = Z(aak + bby)mE;
k=1

N

N
=a Z akmEk +b bkmEk
k=1 k=1

=afd+bfy.

To prove the second statement, we note that

[o-[v=]o-v=0,

Since the integral of a simple function which is greater than or equal to zero almost everywhere is
non- negative by the definition of the integral.

3.6. Remark. We know that for any simple function ¢ we have

N
q) = Z aiin
k=1

Suppose that this representation is neither canonical nor the sets Ei’s are disjoint. Then using the fact
that characteristics functions are always simple function we observe that

fcb = falel +fa2XE2 +...+fan)(En

=aleE1+ azfXEZ +"'+aanEn

= almEl + aZmEZ + -+ anmEn
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N

= z aimEi

k=1

Hence for any representation of ¢, we have

N
f b= ;aimEi

Let f be a bounded real valued function and E be a measurable set of finite measure. By analogy with the
Riemann integral we consider for simple functions ¢ and y the numbers

inf
y=f v
E

and

sup [ &
Ps<f

E

and ask when these two numbers are equal. The answer is given by the following proposition .

3.7. Theorem. Let f be defined and bounded on a measurable set E with mE finite. In order that
inff v (x)dx = supf\y(x)dx
fsy 2 f=y 4

For all simple functions ¢ and v, it is necessary and sufficient that f be measurable.

Proof. Let f be bounded by M and suppose that f is measurable. Then the sets

(K-1)M
n

B = {x|F 2 f0 > } -n<Kks<n,

Are measurable, disjoint and have union E. Thus

The simple function defined by

M n
00 == g ()

k=—-n
and

M n
() == > (k=D ()

k=-n

satisfy
dn(x) < f(x) <y (%)
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Thus inffE\y(x)dx < fE\yn(x)dx = %ZL_nkmEk

and sup [, dx > [[dy(dx= ZTB__ (k- 1)mE;
hence 0 < inffE y(x)dx — sup qu)(x)dX S%Zﬁz_n mE, = %mE.

Since n is arbitrary we have
inff y(x)dx — supf dé(x)dx =0,
E E

and the condition is sufficient.

Suppose now that  inf [_ y(x)dx = sup [ (x)dx.
yzf Ps<f

Then given n there are simple functions ¢,, and vy such that

dn(x) < f(x) < v (%)
And (1) [v,®dx — [ dy()dx < =
Then the functions y* =infy
And ¢* = sup ¢,
Are measurable and ¢'(x) < f(x) < y'(%).

Now the set

A= {x| ¢"(x) < y*(x)}

is the union of the sets
* * 1
Av={x| ¢ < v -7}

But each A, is contained in the set {x

dn(x) <y, (x) — %} , and this latter set by (1) has measure less
than % Since n is arbitrary, mA, = 0 and so mA = 0. Thus ¢* = y* except on a set of measure zero,
and ¢* = fexcept on a set of measure zero. Thus f is measurable and the condition is also necessary.

3.8. Definition. If fis a bounded measurable function defined on a measurable set E with mE finite, we
define the Lebesgue integral of f over E by

ff(x)dx = inff (%)

E E

for all simple functions vy > f.

By previous theorem, this may also be defined as
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!f(x)dx = sup! ¢ (%)

for all simple functions ¢ < f.
We sometime write the integral as [, f . If E =[a,b] we write fabf instead of f[a‘b] f.

Definition and existence of the Lebesgue integral for bounded functions

3.9. Definition. Let F be a bounded function on E and let Ex be a subset of E. Then we define M[f, Ex]
and m[f, Ex] as

M[f, Ex | = L u.bf(x)
XSEk

m[f, E] = g. L bf(x)

XSEk

3.10. Definition. By a measurable partition of E we mean a finite collection P = {Ej, E», ..., En} of
measurable subsets of E such that
n
U E,=E
k=1

And such that m(E; N Ex) =0 (k= 1,2,...,n,j # k)
The sets E;1 , Ez,...,Enq are called the components of P.

If P and Q are measurable partitions, then Q is called a refinement of P if every component of Q is
wholly contained in some component of P.

Thus a measurable partition P is a finite collection of subsets whose union is all of E and whose
intersections with one another have measure zero.

3.11. Definition. Let f be a bounded function on E and let P={ E1 , E> ,....En} be any measurable
partition E. we define the upper sum U[f, P] as

n
k=1

Similarly, we define the lower sum L[f; P] as

M:

L[f, P] = m[f, Ek ] mEk
k=1
As in the case of Riemann integral, we can see that every upper sum for f is greater than or equal to
every lower sum for f.
We then define the Lebesgue upper and lower integral of a bounded function f on E by

iIl}fU[f; P] and sup L[f; P]
P
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Respectively taken over all measurable position of E. We denote them respectively by

ffandff
E E

3.12. Definition. We say that a bounded function f on E is Lebesgue integrable on E if

ffandff
E E

Also we know that if  is a simple function, then

Keeping this in mind, we see that

!fz inf!q/(x)dx

For all simple functions y(x) > f(x). Similarly

f= sup | p(x)dx
! !
For all simple functions ¢(x) < f(x).

Now we use the theorem :

“ Let f be defined and bounded on a measurable set E with mE finite. In order that

%Q\Ifjw(x)dx = sfgg! d(x)dx

E
for all simple functions ¢ and v, it is necessary and sufficient that f is measurable.”
And our definition of Lebesgue integration takes the form :

“ If f is a bounded measurable function defined on a measurable set E with mE finite , we define the
(Lebesgue) integral of f over E by

ff(x)dx = inff y(x)dx

E E

for all simple functions y > f.”

The following theorem shows that the Lebesgue integral is in fact a generalization of the Riemann
integral.
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3.13. Theorem. Let f be a bounded function defined on [a,b]. If f is Riemann integrable on [a, b], then it
is measurable and

b b
Rff(x)dx = ff(x)

Proof . Since f is a bounded function defined on [a, b] and is Riemann integrable, therefore,

b b

Rf f(x)dx = cll)rgf d(x)dx
a a

and

b b

R | f(x)dx = squ)f\u(x)dX
J ys
a a

for all step functions ¢ and y and then

b b
Rf f(x)dx = Rf f(x)dx

= infqu)(x)dx = sup fb y(x)dx (i)
p=f"a y<f a

Since every step function is a simple function, we have

b b b b
ij(x)dx = swli];)jw(x)dx < (lbgffj d(x)dx = ij(x)dx
a a a a
Then (i) implies that
b b
supf\y(x)dx = inff d(x)dx
y<f J ¢2fa

and this implies that f is measurable also.
3.14. Comparison of Lebesgue and Riemann integration

(1) The most obvious difference is that in Lebesgue’s definition we divide up the interval into subsets
while in the case of Riemann we divide it into subintervals.

(2) In both Riemann’s and Lebesgue’s definitions we have upper and lower sums which tend to limits.
In Riemann case the two integrals are not necessarily the same and the function is integrable only if
they are same. In the Lebesgue case the two integrals are necessarily the same, their equality being
consequence of the assumption that the function is measurable.
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(3) Lebesgue’s definition is more general than Riemann. We know that if function is the R- integrable
then it is Lebesgue integrable also, but the converse need not be true. For example the characteristic
function of the set of irrational points have Lebesgue integral but is not R- integrable.

Let  be the characteristic function of the irrational numbers in [0,1]. Let E1 be the set of irrational
number in [0,1], and let E> be the set of rational number in [0,1]. Then P = [Ey, E2] is a measurable
partition of (0,1]. Moreover, y is identically 1 on E1 and y is identically 0 on E> . Hence M[y, E1] =
m[y, E2] =1, while M[y, E1] = m[y, E2] = 0. Hence U[y, P] = 1.m E1 + 0.m E2 = 1. Similarly L[y, P]
=1.mE; +0.M Ez = 1. Therefore, U[y, P] = L[y, P] .
For Riemann integration
M[xJ] =1, m[xJ] =0
for any interval ] c [0,1]

~UlxJl =1LL[xJI =0.
=~ The function is not Riemann- integrable.

3.15. Theorem. If f and g are bounded measurable functions defined on a set E of finite measure, then
(i) Jpaf =a [ f
(i) [+ = [f+ [
(i) Iff<ga.e., then fEf < ng
(iv) Iff=gae,then [f=[g
(v) IfA <f(x) <B,then AmE < [ f <BmE.
(vi)  If Aand B are disjoint measurable set of finite measure, then [, f= [, g+ [.f
Proof. We know that if y is a simple function then so is a .
Hence [, af = \ivrnga\y = a\ivrngw =a.f
Which proves (i).

To prove (ii) let &€ denote any positive real number. These are simple functions ¢ <f,y >f,E<
gand n > g satisfying

Ef¢(X)dX> Eff—s, Ef\y(x)dx< Eff+g,

Efa<x>dx> [e-= [neo<[g+s

E E E
Sincep+E<f+g<vy+n, wehave

J(Hg)zl(w@: Ef¢+}3f§>!f+!g—zg
J(f+g)sl(w+n)= Efw+!n<!f+!g+28
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Since these hold for every € > 0, we have

f(f+g)=ff+fg
E E E

To prove (iii) it suffices to establish

fg—fZO
E

For every simple function y > g — f, we have y > 0 almost everywhere in E. This means that wa >0

Hence we obtain

!@—0=1;gﬂlw@)zo (1)

Which establishes (iii).
Similarly we can show that
[E@-0=sw [ve=<0 @
2 v=(g-0 2
Therefore, from (1) and (2) the result (iv) follows.
To prove (v) we are given that
A<f(x)<B
Applying (iv) we are given that
ff(x)dedexz dexz BmE
E E

E
That is, J;f < BmE

Similarly we can prove that fEf > BmE.

Now we prove (Vi).

We know that x, = = %, + X

Therefore , Jaosf= Jaue %auef = Jaus fCta + 1)

= foA+ JfXB

AUB AUB

=Aff+Bff

Which proves the theorem.



The Lebesgue Integral 63

3.16. Corollary. If fand g are bounded measurable function then

If f(x) = 0onEthen [.f >0 and

If f(x) <OonEthen [.f <0 .

Proof : Let s be a simple function such that > f

Sincef(x) 20onE >y =>00nE

= [¢ >0 =>llpr§fE1|J >0ie [,f >0

Similarly, Let ¢ be a simple function such that ¢ < f. Since f(x) > 0on E
>¢=<0o0nE

= ¢ <0 ﬁ.ilgf)qu) <o0ie [.f<0

3.17. Corollary. Ifm(E)=0,then [ f=0
Or

Integrals over set of measure zero are zero.
Proof : Since f is bounded on E so there exist constant A and B such that

A <f(x)<B

= A.m(E) < f f(x)dx <B.m(E) Vx€E
E

Sincem(E)=0= [.f=0

3.18. Corollary. If f(x) =k a.e. on E then fEf = k.m(E) . In particular if f =0 a.e. on E then fEf =0
Proof : Since f(x) = k a.e on E then fEfz 0

3.19. Corollary. If f=ga.e then fE f= fE g but converse is not true.

Proof : consider the functions

f:[-1,1] 2 Randg:[1,1] = R

 (2ifx <0
as f(x) = {0 ifx> 0

Clearly f and g are bounded and measurable functions.

andg(x)=1 Vx

= fand g are lebesgue integrable on [-1,1]

1 0 1
_J; f(x)dx = _j; f(x)dx + E)I‘f(x)dx

= [ 2dx+ [/ 0.dx =2
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fg(x) = fldx =1m([-1,1D) = 1.2=2

Therefore [.f= [ g
But f # ga.eon[-1,1]
{ m{xe[-11];f+g}=2 #0}
Therefore f # ga.eon E
f and g are not equal even at a single point of [-1,1] as these are defined.

3.20. Corollary. If f =0 a.e on E then fE f = 0 but converse is not true.

] . . L _( 1ifx=0
Proof : Consider the function f: [-1,1] » Ras f(x) = {_1 ifx < 0
1 0 1
ff(x)dx = jf(x)dx+]f(x)dx
-1 -1 0

=-1+1=0
Clearlyf# 0aeasm{x€[-1,1];f#0}=m[-1,1] =2+ 0
So converse is not true.

3.21.Corollary. If fE f=0andf>0onEthenf=0a.e.

Proof : Suppose E has a subset A where f(x) >0,

ie A= u;;°=1{x € E;f(x) > %}

Let E,(n) = {x €E ;f(x) > l}

If possible, suppose there is a positive integer N such that m(E;(N)) > 0.

Then [ > f2 = m(E;(N)) > 0

E;(N)
Which contradicts the fact that [ f =0

Thus, m(E,(n)) = 0 forall n> 1.

This proves the corollary.

3.22. Corollary. Let f be a bounded measurable function on a set of finite measure E. Then
[fefl < flf

Proof : The function |f| is measurable and bounded

Now -|f]| <f<|flonE
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By the linearity and monotonicity of integration,
e fl < Jef < Sl

= |[f] < [Ifl

3.23. The Monotone Convergence Theorem

Let {fn} be an increasing sequence of non-negative measurable functions on E. If {f,} — f pointwise a.e
onE, then lim [ f, = [.f
n—»>oo

Proof : Since {fn} is an increasing sequence

Sofi<faevn
= lim [f, < [f (D
Now by Fatou’s Lemma [ f <lim [f, ... (2)

mffnzli_mff

Case Il If fis a bounded function on E, then theorem is trivially true. Since in this case

From (1) and (2), we have

Hence the result .

|f(x)| < M V x € E for some number M and thus € > 0, one can choose a 6 = (ﬁ) > 0 for which m(A)
<8 then [, f <M [, 1=Mm(A) <€

3.24. Remark : The technique used in above theorem helps us to evaluate the lebesgue integral of non-
negative bounded and unbounded functions.

3.25. Example : Evaluate the Lebesgue integral of the function f: [0,1] = R

1 if0<x<1
0 ifx=0
Clearly f is unbounded, non-negative function defined on [0,1]. Now define a sequence of functions {f,}
on [0,1] as

_(f(x) iff(x) <n
fnx) = {n ifn < f(x)

. 1
f(x) ifx > =

ie. fa(X) = 1
n ifx < =

n
Clearly {fn} is increasing sequence of non-negative measurable functions such that f,— f. So by
monotone convergence theorem
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1

ff(x)dx = rlli_r){jloffn(x)dx

0

= lim [fol/rﬁ f(Odx + [, 3fn(x)dx]

= rllggo[fns ndx + f f(x)dx]
° Yos ]

1

1
= lim [nx]o/n3 + fx_l/sdx

lim
13
_ 1 3 1
= lim [+ 5(1- 13|
3 3
=0+3=3

3.26. Theorem(Lebesgue Bounded Convergence Theorem). Let < f,> be a sequence of measurable

functions defined on a set E of finite measure and suppose that < f, > is uniformly bounded, that is ,

there exist a real number M such that |f,(x)| < M for all ne N and for all x¢ E . If lim f,(x) = f(x) for
n—->oo

each x in E, then

J f=lim [ f, .
n—>o0o0
E E

Proof. We shall apply Egoroff’s theorem to prove this theorem. Accordingly for a given € > 0, there is
an N and a measurable set E, c E such that mE§ < ﬁ and for n > N and x € E, we have

Ifn(x) — £ <

o |

2m(E)

!@—OS!W—H

Hence
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3.27. Remark : Bounded Convergence Theorem need not be true in Riemann integral .
3.28. Example : Let {ri} be a sequence of all rational numbers in [0,1].
DefineS, = {r;:i=12,..,n},n €N

1lifx €S,

and for each n € N, consider the function f,(x) = {0 ifx @S, — {r;,ry, .., 1y}
n

clearly each f,, is bounded, also f, is discontinuous at n-points in [0,1] namely points of S,,
1.6, T, Ty, e, Ty .

At X = I‘1
lim f,(x) # f,(ry) # lim f;,(%)
X—T] X—T]
Hence Riemann integrable on [0,1]

[ A function is Riemann integrable, if it is continous except at a finite number of discontinuity]

Now we have proved that
1

lim Rj f,(x)dx # Rf lim f,(x)dx
n—->oo n—->oo
0

= Rffn(x)dx = ffn(x)dx = f f(x)dx
0 0

SnUSS

{~SaUS; =1[01]}

= an(x)dx+ an(X)dX

Sn s¢

= fldx+ dele.m(Sn)z 0
Sn Sk

[ {Sn}sequence of rationals m(S,) = 0]
1

= lim Rf f,(x)dx =0
0
Clearly {fn} is convergent to f when f is defined as

f(x) = { 1 if fis rational in [0,1]

0 if fis irrational in [0,1]
and f is not Riemann — integrable on [0,1]
1

= Rf f(x)dx does not exists .
0
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1 1
lim | f,(x)dx # R f lim f,(x)dx
n—oo n—-oo

0 0

So bounded convergence theorem does not hold in Riemann integral .
The integral of a non-negative function

3.29. Definition. If f is a non-negative measurable function defined on a measurable set E, we define

ff= supfh,
hsf
E E

Where h is a bounded measurable function such that m{x|h(x) # 0} is finite.
3.30. Theorem. If f and g are non-negative measurable functions, then
(i) Jpcf=cf.f>0

(i) [(f+g =[,f+ [ gand
(i) Iff<ga.e., then

<

Proof. The proof of (i) and (iii) follow directly from the theorem concerning properties of the integrals
of bdd functions.

We prove (ii) in detail.
If h(x) < f(x) and k(x) < g(x), we have h(x) + k(x) < f(x) + g(x), and so

J(h+k)£!(f+g)

ie. Joh+ [k < [[(f+g).
Taking suprema, we have
(v)  fpf+ g < f;(f+9)

On the other hand, let £ be a bounded measurable function which vanishes outside a set finite measure
and which is not greater than (f + g). Then we define the functions h and k by setting

h(x) = min(f(x), £(x))
and k(x) = £(x) — h(x)
we have h(x) < f(x),
k(x) < g(x)
while h and k are bounded by the bound ¢ and vanish where ¢ vanishes. Hence
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Efﬁzth+fksEff+fg

E E

supffs ff+fg
f<f+g

E E E

And so taking supremum, we have

That is,
v L+ e=[[(f+g)
From (iv) and (v), we have

f(f+g)=ff+ g

E E E
3.31. Fatou’s lemma. If < f, >is a sequence of non-negative measurable functions and fn(x) = f(x)
almost everywhere on a set E, then
f f <lim f fn
E E

Proof. Let h be a bounded measurable function which is not greater than f and which vanishes outside a
set E’ of finite measure. Define a function hy by setting

hn(x) = min{h(x), fa(x)}
Then hn is bounded but bounds for h and vanishes outside E’ . Now hn(X) —h(x) for each x in E’ .

Therefore by “Bounded Convergence theorem” we have

fhthzlimfhn sn_mffn
E E/ E/ E

Taking the supremum over h, we get
f f < lim f fn
E E

3.32. The inequality in Fatou’s lemma may be strict

Consider a sequence {f} defined on R as

Fa(X) = {

Clearly sequence {fn} is sequence of non — negative measurable funcyions defined on R and

lifx € [n,n + 1] E,
0 otherwise E,

lim f, = fwheref=0 = [ f=0

n—-oo
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Also Jafa = fEl uE, fn = fEl f, + sz f,

= lim [ f, = 1and we know that 0 <1

So [ f <lim [, f,
3.33. Fatou’s lemma need not good unless the function f, is non — negative
1 2
: : —nif- <x <= E
Let us consider the function fn(x) = { g =X =y 1
0 otherwise E,

Hence lim f,(x) = f(x) = 0ae = [ f(x)dx =0
n—oo
Also [ f,(x)dx = Jg, f2GOdx + [ £,00dx
_ (% _
_fl/n —ndx+0= -1

Thus lim [ f,()dx = —1

1 1
:ff(x)dx $h_mjfn(x)dx
0 0

3.34. Theorem( Lebesgue Monotone Convergence theorem). Let < f, > be an increasing sequence of
non negative measurable functions and let f = lim f, . Then

jf:limjfn
JfSli_mjfn

But for each n we have f, < f, son [ f, < [ f. But this implies

ijsjf
[r=tim |5

3.35. Definition. A non-negative measurable functions f is called integrable over the measurable over
the measurable set E if

free

E

Proof. By Fatou’s Lemma we have

Hence
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3.36. Theorem. Let f and g be two non-negative measurable functions. If f is integrable over E and
g(x)<f(x) on E, then g is also integrable on E, and

[¢-0=[r-]s

Proof. Since If=L(f-9+/.9
and the left hand side is finite, the term on the right must also be finite and so g is integrable.

3.37. Theorem. Let f be a non-negative function which is integrable over a set E. The given € > 0 there
isad > 0 such that for every set A ¢ E with mA < § we have

ff<e
Proof. If |f| < K, then I, f < J,K=KmA
€ €
Set§ <— Then [,f <K.—= €.

Set fn(x) = f(x) if f(X) < n and fa(x) = n otherwise. Then each f, is bounded and f, converges to f at each
point. By the monotone convergence theorem there is an N such that fE fn > fE f—-

and [((f—fw) < <.

Choose § < % If mA <& , we have

-

(ﬂﬁm+fm
A

(f = fu) + NmA

Af
,!

(since JfN < fN=NmA)

A

3.38. The General Lebesgue Integral
We have already defined the positive part f* and negative part £~ of a function as
f* =max(f,0)
]_‘ = max(—f,0)
Also it was shown that
f=f-f
fl=f"+f

With these notions in mind, we make the following definition.
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3.39. Definition. A measurable function f is said to be integrable over E if f* and f are both integrable

over E. In this case we define
E E E

3.40. Theorem. Let f and g be integrable over E. Then

Q) The function f+g is integrable over E and

Ef(f+g)=Eff+Efg
ffsfg

E E

(i) Iff<ga.e., then

(i)  If Aand B are disjoint measurable sets contained in E, then
Jr=]r+]s
AUB

Proof. By definition, the function f*,f,g*,g are all integrable. If h = f + g, then h = (f*—,f) +

(g — g) and hence h = (f* +g*) — (f + g) . Since f* + g* and f + g are integrable therefore
their difference is also integrable. Thus h is integrable.

We then have

fh=f[<f++g+>— (F+7)
E E

—(jf+—ff)+(f |
That is, L+ =[f+].9

Proof of (ii) follows from part (i) and the fact that the integral of a non-negative integrable function is
non-negative.

For (iiiywe have [, _f = [ fyas



The Lebesgue Integral 73

~ [t [fu= [ £+ [ 1
A B

It should be noted that f+g is not defined at points where f = co and g = —oco and where f = —oco and
g = o . However, the set of such points must have measure zero, since f and g are integrable. Hence the
integrability and the value of [(f + g) is independent of the choice of values in these ambiguous cases.
3.41. Theorem. Let f be a measurable function over E. Then f is integrable over E iff |f]| is integrable
over E. Moreover, if f is integrable, then

f4=.ﬂﬂ

E E

Proof. If f is integrable then both f* and f~ are integrable. But |f| = f* + f~ . Hence integrability of
f* and f~ implies the integrability of |f|.

Moreover, if f is integrable, then since f(x) < |f(x)| = |f|(x) , the property which states that if f < g
a.e., then [ f < [ g implies that

[r=]in (0

On the other hand since —f(x) < |f(x)|, we have

—[f = [Ifl (i)
From (i) and (ii)

Conversely, suppose f is measurable and suppose |f| is integrable. Since
0<f () < If()l
It follows that f* is integrable. Similarly £~ is also integrable and hence f is integrable.

3.42. Lemma. Let f be integrable . Then given & > 0 there exist § > 0 such that | [, f| < e whenever

A is measurable function f we have = f* — f~ . So by that we have proved already, given > 0 , there
exist §; > 0 such that
€
+ o =
[re<s.
A

When mA<g;. Similarly there exists §, > 0 such that

fr<s

A
When mA<§,. Thus if mA < § = min (6;,5,) , we have

[ ] ST If1= [ fr+ [ f<s+i=¢

This completes the proof.
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3.43. Theorem (Lebesgue Dominated Convergence Theorem) Let a sequence < fy >, ne N of
measurable functions be dominated by an integrable function g, that is

()] < g(x)
Holds for every n e N and every x ¢ N and let < f, > converges pointwise to a function f, that is , f(x) =
lim f,,(x) for almost all x in E. Then
n—->oo
[ = tim | £
n—->0oo
E E

Proof. Since |f,| < g for every ne N and f(x) = lim f,(x), we have |f| < g. Hence f, and f are
n—-oo

integrable. The function g — f is non-negative, therefore by Fatou’s Lemma we have
[o-[r=[w-p < m[@G-£
E E E E

=fg—Wffn
E E

Whence Jf =1im [ f,

Similarly considering g + f, we get

—

fsﬁjfn
E E

Consequently, we have Jof=lim [_fy



SECTION - IV

DIFFERENTIATION AND INTEGRATION

The “fundamental theorem of the integral calculus” is that differentiation and integration are inverse
processes. This general principle may be interpreted in two different ways.

If f(x) is integrable, the function

F(x) = [ f(tdt

is called the indefinite integral of f(x); and the principle asserts that(i) £(x) = f(x) (i)

On the other hand, if F(x) is a given function, and f(x) is defined by (ii), the principle asserts that

J; f(©dt=F(x) — F(a) (iii)
The main object of this chapter is to consider in what sense these theorems are true.

From the theory of Riemann integration (ii) follows from (i) if x is a point of continuity of f. For we can
choose ho so small that |f(t) —f(x)| < & for [t—X| < ho; and the
F(x+h)—F(x)
h
This proves (ii).

—f(x) = % fXX+h{f(t) —fx)}dt<e ( |n] < ho) by the mean-value theorem.

We shall show that more generally this relation holds almost everywhere. Thus differentiation is the
inverse of Lebesgue integration.

The problem of deducing (iii) from (ii) is more difficult and even using Lebesgue integral it is true only
for a certain class of functions. We require in the first place that F(x)should exist at any rate almost
everywhere and as we shall see this is not necessarily so. Secondly, if F(x) exists we require that it
should be integrable.

Differentiation of Monotone Functions

4.1. Definition. Let C be a collection of intervals. Then we say that C covers a set E in the sense of
Vitali, if for each € >0 and x in E there is an interval | € C such that xel and I(l) < €.

Now we prove the following lemma which will be utilized in proving a result concerning the
differentiation of monotone functions.

4.2. Lemma. (Vitali). Let E be a set of finite outer measure and C a collection of intervals which cover
E in the sense of Vitali. Then given & > 0 there is a finite disjoint collection {li,..., In} of intervals in C
such that

m*[E— UN_ I,]<e.
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Proof. It suffices to prove the lemma in the case that each interval in C is closed, for otherwise we
replace each interval by its closure and observe that the set of endpoints of Iy, Io,..., In has measure zero.

Let O be an open set of finite measure containing E. Since C is a Vitali covering of E, we may suppose
without loss of generality that each | of C is contained in O. We choose a sequence <I, > of disjoint
intervals of C by induction as follows :

Let Iy be any interval in C and suppose l,..., I, have already been chosen. Let kn be the supremum of
the lengths of the intervals of C which do not meet any of the intervals I4,...,In .

Since each | is contained in O, we have ky < m O < oo . Unless, E c U}, [; we can find In+1 in C
with 1(ln+1) > % kn and In+1 is disjoint from Iy, Io,..., In. Thus we have a sequence < I, > of disjoint
intervals of C, and since U I, cO, we have Y [(In)) <m0 < oo,

Hence we can find an integer N such that Y lly) < §
Let R=E-UN_,1,.
It remains to prove that m*R < .
Let x be an arbitrary point of R. Since UN_, I, is a closed set not containing x, we can find an

interval | in C which contains x and whose length is so small that | does not meet any of the intervals
I, lo,..., In. If now I n i = @ for i < N, we must have I(I) < kn < 2l (In+1). Since lim I(ln) = 0, the
interval | must meet at least one of the intervals I,. Let n be the smallest integer such that | meets In.

We have n > N, and I(I) < kn < 2l (In+1). Since x is in I, and | has a point in common with Iy, it follows
that the distance from x to the midpoint of I, is at most I(I) + % I(In) < g I (In+2).

Let Jn denote the interval which has the same midpoint as Im and five times the length of  In. Then
we have X € Jm. This proves R cUyiIn

Hence M* R< XR41l0Un) = 5201 L0 <&
The Four Derivatives of a Function

Whether the differential coefficients
z . f(x+h)—f(x)
X) = lim ———=
fO) = lim =——
exist or not, the four expressions

D*(x) = Tim I
h—-0+

h
D~f(x) = M_f@-ifx-h)

f(x+h)—f(x)
h
f(x)—f(x—h)
h

D f(x) = lim 5,0+

D_f(x) = lim o
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always exist. These derivatives are known as Dini Derivatives of the function f.

D" f(x) and D+ f(x) are called upper and lower derivatives on the right and D~f(x) and D_f(x) are called
upper and lower derivatives on the left. Clearly we have D* f(x) = D. f(x) and D~f(x) = D_f(x).
If D" f(x) = D+ f(x), the function f is said to have a right hand derivative and if D™f(x) = D_f(x), the
function is said to have a left hand derivative.

If D* f(x) = D+ f(x) = D™f(x) = D_f(X)# Foo we say that f is differentiable at x and define £’(x) to
be the common value of the derivatives at x.

4.3.Theorem. Every non-decreasing function f defined on the interval [a, b] is differentiable almost
everywhere in [a, b]. The derivative f* is measurable and
[P (0dx =f(b) — (a)

Proof. We shall show first that the points x of the open interval (a, b) at which not all of the four Dini-
derivatives of f are equal form a subset of measure zero. It suffices to show that the following four
subsets of (a, b) are of measure zero:

A={x € (a, b) | D-f(x) < D" f(x) },

B={x € (a, b)| D+ f(x) <D f(x) },

C={x€(a b)|D-f(x) <D f(x) },

D ={x € (a, b) | D+ f(x) < D* f(x) }. To prove m* A =0, consider the subsets
Auv={x € (a,b) | D-f(x) <u<v<D"f(x)}

of A for all rational numbers u and v satisfying u < v. Since A is the union of this countable family
{Auy}, it is sufficient to prove m* (Ayy) = 0 for all pairs u, v with u <v.

For this purpose, denote @ = m* (Auy) and let € be any positive real number. Choose an open set
U D Ay withm* U < a + ¢ . Set x be any point of Ayy . Since D. f(x) < u, there are arbitrary small
closed intervals of the form [x-h, x] contained in U such that

f(x) - f(x-h) < uh.

Do this for all x € Ay, v and obtain a Vitali cover C of Ayy. Then by Vitali covering theorem there is a
finite subcollection {J1, J2,..., Jn}of disjoint intervals in C such that

M*(Auy - Uizy Ji) <€
Summing over these n intervals, we obtain
z:?=1 faxi = f(xhy) <U 2:?=1 h;
<um*U
<U(a +¢)

Suppose that the interiors of the intervals Ji, Jo,..., Jn cover a subset F of Ayv. Now since
D* f(y) > v, there are arbitrarily small closed intervals of the form [y, y+k] contained in some of the
intervals Ji (i=1, 2,..., n) such that
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f(y+k) — f(y) > vk

Do this for all y € F and obtain a Vitali cover D of F. Then again by Vitali covering lemma we can
select a finite subcollection [K1, Ko, ..., Km] of disjoint intervals in D such that

m* [F— U™, Ki]<e

Since m*F > a — ¢, it follows that the measure of the subset H of F which is covered by the intervals is
greater than @ — 2¢. Summing over these intervals and keeping in mind that each K; is contained in a Jn,
we have

Li{fx; — f — h)} = 224 [f(yi+ki)— fy!
>VET k
> v(@ — 28)
So that

via — 2¢) <u(@ — €)
Since this is true for every € >0, we must have v a < u a. Since u <, this implies that « = 0 . Hence
m*A = 0. Similarly, we can prove that m*B = 0, m*C = 0 and m*D = 0. This shows that

. f(x+h)—f(x)
X) = lim ———=
g9(x) = lim =——

is defined almost everywhere and that f is differentiable whenever g is finite.

If we put
gn(x) = n[f (x+%) -f(x)]  forx e [ab],

where we re-define f(x) = f(b) for x > b. Then gn(x) = g(x) for almost all x and so g is measurable since
every gn is measurable. Since f is non-decreasing, we have g, = 0. Hence, by

Fatou’s Lemma
b . b . b
Vg <tmf; g, =timn [7[f(x+3) - f(0)]dx

1
= limn [*'7 f)dx — [ f(dx

= lim n [[fCO) + fb“% f(x)dx — f:”% fx)dx — [ f(x)dx
= limn ['[f(x+ ) — f(9)]dx

< f(b)-f(a)

(Use of f(x) = f(b) for x > b for first interval and f non-decreasing in the 2" integral).
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This shows that g is integrable and hence finite almost everywhere. Thus f is differentiable almost
everywhere and g(x) = f(x) almost everywhere. This proves the theorem.
Functions of Bounded Variation

Let f be a real-valued function defined on the interval [a,b] and let a = Xo < X1 < X2 < ... <Xn = b be any
partition of [a,b].

By the variation of f over the partition P = {Xo, X1,..., xn} Of [a,b], we mean the real number V(f, P)
=Xz [f(xi) — f(xi-1)]
and then
VL(f) = sup {V(f,P) for all possible partitions P of [a,b] }
=supp Xi=q [f(x1) — f(xi_1)]

is called the total variation of f over the interval [a,b]. If V2°(f) < oo then we say that f is a function of
bounded variation and we write f € BV.

4.4. Lemma. Every non-decreasing function f defined on the interval [a,b] is of bounded variation with
total variation

V22 (f) = f(b) — f(a).
Prof. For every partition P = [Xo, X1, ..., Xn} Of [a,b], we have
V(f, P) = B, 1(xp) — fC-)| =8 [fx) — £(xi1)]
=f(b) - f(a)
This implies the lemma.

4.5.Theorem. (Jordan Decomposition Theorem). A function f: [a,b] —= R is of bounded variation if and
only if it is the difference of two non-decreasing functions.

Proof. Let f = g-h on [a,b] with g and h increasing. Then for any, subdivision we have
iz [f(x1) — f(xi-1)| < Xt 18Gi) — 8(xi-1)| + Xitq [h(x;) — h(xi-1)|
=9g(b) — 9(a) + h(b) - h(a)
Hence,
Va'(f) < g(b) — g(@) + h(b) - h(a),
which proves that f is of bounded variations.

On the other hand, let f be of bounded variation. Define two functions g, h : [a, b] =R by taking
g(x) = VaX(f), h(x) =VaX(f) — f(x) forevery x € [a, b]. Then f(x) = g(x) — h(x).

The function g is clearly non-decreasing. On the other hand, for any two real numbers x and y in [a, b]
with x <y, we have

h(y)—h(x) = [Va*(f) = f(y)] — [V&(F) — f(x)]
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=V () - [f(y) — f(x)]
= ny (f) _ny (f) =0

Hence h is also non-decreasing. This completes the proof of the theorem.

4.6. Examples. (1) If f is monotonic on [ab], then f is of bounded variation on [a, b] and
V(f) = |f(b)-f(a)| , where V() is the total variation.

(2) If £(x) exists and is bounded on [a, b], then f is of bounded variation. For if |f(x)| < M we have
i=1 (1) = f(xi—) | < Xizy MIxi — xi-1 [=M(b-a)
no matter which partition we choose.
(3) f may be continuous without being of bounded variation. Consider
) ={x sing (0<x<2)
0 (x=0)

Let us choose the partition which consists of the points

2 2 2 2 2
O, on—1' gn—3’ gn-5’ ***c- E,g, 2
Then the sum in the total variation is
2 2 2 2 2 2 1 1 1
t= )+ (=+ )+t + >+ -+ +=
(2 3) (3+5) (Zn_3+ 2n—1) 2n-1 2+3+ n

and this can be made arbitrarily large by taking n large enough, since Z% diverges.

(4). Since [f(x)— f(a)| < V(f) for every x on [a,b] it is clear that every function of bounded variation is
bounded.

The Differentiation of an Integral
Let f be integrable over [a,b] and let
F(X) = [; f(Ddt
If fis positive, h > 0, then we see that
Fx+h) — F(x) = " f(dt
Hence, integral of a positive function is non-decreasing.
We shall show first that F is a function of bounded variation. Then, being function of bounded variation,

it will have a finite differential coefficient F’ almost everywhere. Our object is to prove that F(x) = f(x)
almost everywhere in [a,b]. We prove the following lemma :

4.7. Lemma. If f is integrable on [a,b], then the function F defined by
F(X) = [ f(Ddt
is a continuous function of bounded variation on [a,b].
Proof. We first prove continuity of F. Let Xo be an arbitrary point of [a,b]. Then
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IF(x) = Fxo)| = [, f(Ddt |

< fxlf(t)ldt

0

Now the integrability of f implies integrability of |f| over [a,b]. Therefore, given &> 0 there is a

& > 0 such that for every measurable set A c[a,b] with measure less than &, we have fA |f| < e.Hence
|F(X)-F(Xo0)| < € whenever [x—Xo| < 81

and so f is continuous.

To show that F is of bounded variation, let a = Xo < X1 < ... <xn = b be any partition of [a,b]. Then
L IFGq) = F(xio) = DIy | [ f(©dt — [ f(R)dt |
— Xi
=3R [ f(ode |
Xi
<Xt [, 1f©]dt
b
=/ If(D]dt
Thus V() < [ [f(D)]dt < oo

Hence F is of bounded variation.

4.8. Lemma. If f is integrable on [a, b] and
[ f(®dt =0
for all x € [a,b], then f = 0 almost everywhere in [a,b].

Proof. Suppose f> 0 on a set E of positive measure. Then there is a closed set F ¢ E with m F > 0. Let
O be the open set such that

O=(ab)-F
Then either fabf + 0 orelse
— b —
0=[ f=[f+/f
=[of + 2 f, (Dt (1)

because O is the union of a countable collection {(an, bn)} of open intervals.

But, for each n,
by __ bn an
fan f(odt= [ " f(dt— [ " f(t)dt

= F(b,,) -F(a,,) = 0 (by hypothesis) Therfore, from (1), we have
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[r=0
F

But since f > 0 on F and mF > 0, we have fFf > 0.

We thus arrive at a contradiction. Hence f = 0 almost everywhere.
4.9. Lemma. If f is bounded and measurable on [a, b] and
F(x) = [; (D dt + F(a),

x+h

then F’(x) = f(x) for almost all x in [a,b]. f,(x) = % [f f(t)dt — f f(t)dt]

Proof. We know that an integral is of bounded variation over [a,b] and so F’(x) exists for almost all x in
[a,b]. Let |f| < K. We set
F(X+h) F(x)

fn(x) =

with h = % Then we have
£, =2 [ O dt — [ F(Ddt]
= [ o) dt

implies | £,G0)] = |+ [ fOdt] < = " |f(0)|dt

<%fx+h1<dt

== h=K
Moreover,
fn(x) > F'(%)
Hence by the theorem of bounded convergence, we have
[P dx = lim [©f, (0)dx = lim % SSTF(x + h) — F()]dx
= lim [ [ FGOdx — 1 [ F(0) dx]
= lim [ [ FGodx — 3 [ F () dx]
= F(0)-F(@)
=fac f(x)dx
Hence,

JiTF'G) — f(0)ldx = 0
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For all cg[a,b], and so
F'(x)= f(x) a.e.
By using pervious lemma.
Now we extend the above lemma to unbounded functions.

4.10. Theorem. Let f be an integrable function on [a,b] and suppose that
F(X) = F(a) +/ f(x)dt
Then F’(x) = f(x) for almost all in X in [a,b].

Proof. Without loss of generality we may assume that f > 0 (or we may write “From the definition of
integral it is sufficient to prove the theorem when f > 0).

Let f, be defined by fn(x) = f(x) if f(x) < n and fn(x) = n if f(x) > n. Then f-f, > 0 and so
Ga(x) = [ (f — )

is an increasing function of x, which must have a derivative almost everywhere and this derivative will
be non-negative. Also by the above lemma, since f, is bounded (by n), we have

w ) =60 ae.

Therefore,
, _d X _d X
F (X)_a(fa f) _E(Gn + fa fn)
=5 Gt LU 2h@ ae (using ()

Since n is arbitrary, making n— oo we see that
F’(x) = f(x) a.e.
Consequently,

fab F'(x)dx > fab f(x)dx =F(b) — F(a) (using the hypothesis of the theorem)
Also since F(x) is an increasing real valued function on the interval [a,b], we have

[P (0)dx < F(b) —F(A) = [ f(x)dx
Hence

[P ()dx = F(b) —F(A) = [° f() dx

implies ["[F'(x) — f(x)]dx = 0

Since F’(x) — f(x) =0, this implies that F’(x)— f(x) =0 a.e. and so F’(x) = f(x) a.c.
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Absolute Continuity

4.11. Definition. A real-valued function f defined on [a,b] is said to be absolutely continuous on [a,b]
if, given € > O there isa § > 0 such that

D 1) — POl < &

for every finite collection {(xi, Xi’)} of non-overlapping intervals with

n

Dl —x1<8

i=1
An absolutely continuous function is continuous, since we can take the above sum to consist of one term
only. Moreover, if

F() =/ f(D)de
Then
L 1fGq") —FG)| = Ziy | [ f(©de — [ f(Dde |
=ZL | [ fDdt |
< T LU IIde = fIf©ldt,
where E is the set of intervals (x,xi’) < —0as YL, |x;' —x;| >0

The last step being the consequence of the result.

“Let € >0 . Then there is a § > 0 such that for every measurable set E c [a, b] with
mE<§,wehave [, |f|<e”.

Hence every indefinite integral is absolutely continuous.

4.12. Lemma. If f is absolutely continuous on [a,b], then it is of bounded variation on [a,b].

Proof. Let § be a positive real number which satisfies the condition in the definition for ¢ = 1. Select a
natural number

n>==
Consider the partition = = {Xo, Xu,..., Xn} Of [a,b] defined by
Xi = Xo + ~2=%
foreveryi=0, 1,..., n. Since |xi — Xi-1| < &, it follows that
VXi_lXi (hH<1.

This implies
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V() = ik Vi, (D <n

Hence f is of bounded variation.

4.13. Corollary. If f is absolutely continuous, then f has a derivative almost everywhere.

Proof: Since f is absolutely continuous, then by above theorem, f is of bounded variation and hence f
has a derivative almost everywhere (by theorem 4.3).

4.14. Lemma. If f is absolutely continuous on [a,b] and f’(x) = 0 a.e., then f is constant.
Proof. We wish to show that f(a) = f(c) for any c € [a,b].

Let E c (a,c) be the set of measure c-a in which f’(x) = 0, and let € and n be arbitrary positive numbers.
To each x in E there is an arbitrarily small interval [x, x+h] contained in [a,c] such that

[f(x+h) - () [<n h

By Vitali Lemma we can find a finite collection {[xx, yk]} of non-overlapping intervals of this sort
which cover all of E except for a set of measure less than &, where § is the positive number
corresponding to ¢ in the definition of the absolute continuity of f . If we label the Xk so that Xk < Xk+1,
we have (or if we order these intervals so that)

a=yo<X1<yr<X2<...<yn<Xn+1=C
and
f Q=0 Xk+1 —yx ) <8
Now, ¥x —o [ (i) — f(xi) | <1 Xk =1 lyk — x| <n(c—a)
by the way to intervals {[xk, yx]} were constructed, and

D 1) — fyd | < &
k=0

by the absolute continuity of f. Thus

If(c) — f(a) |= Xk ol If iea1) — £(yid | ] + Xi=a[ 1f (i) — fxi)] | < € +1m(c — a)Since &
and n are arbitrary positive numbers, f(c) — f(a) = 0 and so f(c) = f(a).

Hence f is constant.
4.15. Theorem. A function F is an indefinite integral if and only if it is absolutely continuous.

Proof. Let function F is an indefinite integral then
F(X) = [ f(dt

where f is integrable on [a, b]

Now f is integrable on [a, b]

= |f1] is integrable on [a, b]. Then for given € > 0, there is a § > 0 such that for every measurable
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set A contained in [a, b] with m(A) < &, we have fA Ifl <e

Let {(xi, xi )}"i=1 be any finite collection of pairwise disjoint interval in [a, b] such that ¥, |x; — x';| < &
Let A= Uil (x;x"5)

Thenm(A) = Y lx — x| <6

Therefore we have fA If] < ¢

i.e., U{Ll(xi,x’i)lfl <e€

=3k, [, Ifl <e..(D)
[ fde — 7 F@at]

Consider ¥, |F(x'}) = F(x)| =¥, i=1 |f; ‘f(t)dt|
<YL fp 1F@©1d@
< e[by (1)]
Conversely, Suppose F is absolutely continuous on [a,b]. Then F is of bounded variation and we may
write

F(x) = F1(x) — Fa(x),

where the functions Fi are monotone increasing. Hence F’(x) exists almost everywhere and [F’(x)| <
Fi*(x) + F2’(x)

Thus [ |F'(x)|dx < Fi(b) + Fa(b) — F1(a) — F2(a)
and F’(x) is integrable. Let
G(x) = [, F'(D)dt

Then G is absolutely continuous and so is the function f = F—G. But by the above lemma since
f’(x) = F'(x)- G’'(x)=0 a.e., we have f to be a constant function. That is,
F(x) — G(x) = A (constant)

or
F) = [ F(Hdt=A

or
F() = [ F'(Ddt+ A
Taking x = a, we have A = F(a) and so
F(X) = [J F'(Hdt + F(a)

Thus F(x) is indefinite integral of F’(x).



