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MEASURABLE SETS 

Introduction 

In measure theory, a branch of mathematics, the concept of Lebesgue measure, was given by French 

mathematician Henri Lebesgue in 1901.   Sets that can be assigned a Lebesgue measure are called 

Lebesgue-measurable; the measure of the Lebesgue-measurable set A is here denoted by m*(A). 

Lebesgue Measure 

In this section we shall define Lebesgue Measure, which is a generalization of the idea of length. 

1.1 Definition. The length 𝑙(I) of an interval I with end points a and b is defined as the difference of 

the end points. In symbols, we write. 

𝑙 (𝐼)  =  𝑏 –  𝑎. 

1.2 Definition. A function whose domain of definition is a class of sets is called a Set Function. For 

example, length is a set function. The domain being the collection of all intervals. 

 1.3 Definition. An extended real – valued set function  defined on a class E of sets is called 

Additive if 𝐴  𝐸, 𝐵  𝐸, 𝐴  𝐵  𝐸 𝑎𝑛𝑑 𝐴  𝐵 =  , 𝑖𝑚𝑝𝑙𝑦  

 (𝐴  𝐵)  =   (𝐴)  +   (𝐵) 

1.4 Definition. An extended real valued set function 𝜇 defined on a class E of sets is called finitely 

additive if for every finite disjoint classes {𝐴1, 𝐴2, … . , 𝐴𝑛}of sets in E, whose union is also in E, 

we have  

𝜇(𝑈𝑖=1
𝑛 𝐴𝑖 )  =  ∑𝜇(𝐴𝑖)

𝑛

𝑖=1

 

1.5  Definition. An extended real–valued set function  defined on a class E of sets is called 

countably additive it for every disjoint sequence {𝐴𝑛} of sets in E whose union is also in E, we have 

𝜇(𝑈𝑖=1
∞ 𝐴𝑖 )  =  ∑𝜇(𝐴𝑖)

∞

𝑖=1

 

1.6 Definition. Length of an open set is defined to be the sum of lengths of the open intervals of 

which it is composed of. Thus, if G is an open set, then 

𝑙(𝐺)  =  ∑𝑙(𝐼𝑛)

𝑛

 

where  

𝐺 =  𝑈𝑛 𝐼𝑛 , 𝐼𝑛1   𝐼𝑛2  =  𝜙 𝑖𝑓 𝑛1  𝑛2. 

https://en.wikipedia.org/wiki/Measure_(mathematics)
https://en.wikipedia.org/wiki/Mathematics
https://en.wikipedia.org/wiki/France
https://en.wikipedia.org/wiki/Henri_Lebesgue
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1.7 Definition. The Lebesgue Outer Measure or simply the outer measure m* of a set A is defined as 

𝑚∗(𝐴) = inf
𝐴𝑈𝐼𝑛

∑ 𝑙(𝐼𝑛). 

where the infimum is taken over all finite or countable collections of intervals {In} such that 𝐴𝑈𝐼𝑛  

Since the lengths are positive numbers, it follows from the definition of 𝑚∗ that 𝑚∗(𝐴)  0. 

1.8 Remark: (i) If 𝐴 ⊆  𝐵 ,then 𝑚∗(𝐴)  ≤  𝑚∗(𝐵) i.e. outer-measure has monotone property.  

Proof: By definition of outer-measure, for each ɛ >  0, there exist a countable collection of open 

interval {In} such that 𝐵 ⊆  𝑈𝑛 𝐼𝑛 and 

 𝑚∗(𝐵)  +  ɛ >  ∑ 𝑙(𝐼𝑛 )𝑛  ...1) 

now 𝐴 ⊆  𝐵 𝑎𝑛𝑑 𝐵 ⊆  𝑈𝑛 𝐼𝑛 

=> 𝐴 ⊆  𝑈𝑛 𝐼𝑛 

𝑚∗(𝐴)  ≤  ∑  𝑙 (𝐼𝑛 )𝑛   

< 𝑚∗(𝐵)  +  ɛ ( 𝑢𝑠𝑖𝑛𝑔 1) )  

 𝑚∗(𝐴)  <  𝑚∗(𝐵)  +  ɛ  

but ɛ >  0 is arbitrary, 𝑚∗(𝐴)  ≤  𝑚∗(𝐵) hence proved.  

(ii) Outer-measure of a set is always non-negative. 

1.9 Theorem. Outer measure is translation invariant. 

Proof. Let  >  0 be given. Then by definition of outer measure, There exist a countable collection of 

intervals {𝐼𝑛}  such that 𝐴   𝐼𝑛 𝑎𝑛𝑑  

 𝑚∗ (𝐴) +   > ∑  𝑙(𝐼𝑛)𝑛 .   

 Now,  𝐴  ⋃ (𝐼𝑛)𝑛  

=>  𝐴 +  𝑥  ⋃ (𝐼𝑛 + 𝑥)𝑛 ,  

=> 𝑚∗ (𝐴 +  𝑥)∑  𝑙(𝐼𝑛  +  𝑥)𝑛  =  𝛴 𝑙(𝐼𝑛) [length is translation invariant] 

 𝑚∗𝐴 +    

Since  is arbitrary positive number, we have  

(2)  𝑚∗ (𝐴 +  𝑥)  𝑚∗(𝐴)       (1) 

To prove reverse inequality, Let  >  0 be given. Then by definition of outer measure, There exist a 

countable collection of intervals {𝐽𝑛}  such that 

 𝐴 + 𝑥  ⋃ 𝐽𝑛𝑛  𝑎𝑛𝑑  

 𝑚∗ (𝐴 + 𝑥) +   > ∑  𝑙(𝐽𝑛 )𝑛 .   

Now,  𝐴 + 𝑥  ⋃ 𝐽𝑛𝑛  
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 𝐴  ⋃ (𝐽𝑛 − 𝑥)𝑛  

 𝑚∗ (𝐴) ∑  𝑙(𝐽𝑛 − 𝑥)𝑛  

 𝑚∗ (𝐴) ∑  𝑙(𝐽𝑛)𝑛 < 𝑚∗ (𝐴 + 𝑥) +   

  𝑚∗ (𝐴)  𝑚∗(𝐴 +  𝑥)      (2) 

Then Combining (1) and (2), the required result follows. 

i.e., 𝑚∗ (𝐴) =  𝑚∗(𝐴 + 𝑥) 

1.10 Theorem. The outer measure of an interval is its length.  

Proof. CASE (1) Let us suppose, first I is a closed and bounded interval, say I = [a, b]  

To prove: m*(I) = ℓ [a, b] =b - a.  

Now for each ɛ> 0, I = [a, b] ⊆ (a - ɛ, b+ ɛ) then   

by definition of outer-measure  

 => m*(I) ≤ ℓ (a - ɛ, b+ ɛ) ≤  (b+ ɛ- a+ ɛ) 

 => m*(I) ≤ b-a + 2 ɛ  

since ɛ is an arbitrary, m*(I) ≤  b-a = ℓ (I)      (1)  

Now to prove, m*(I) = b-a, then it is sufficient to prove m*(I) ≥ b-a. let {In} be a countable collection of 

open intervals which covering I i.e.  

 I ⊆ ⋃ 𝐼𝑛𝑛   

∑ ℓ(𝐼𝑛)𝑛 ≥ b-a for all n ∈ N so it is sufficient to prove that  

inf ∑ ℓ(𝐼𝑛)𝑛  ≥ b-a  

since I = [a, b] is compact, then by Heine Boral theorem, we can select a finite number of open intervals 

from this {In} such that their union contains I. 

Let the intervals be J1, J2, ..., Jp such that  ⋃ 𝐽𝑖
𝑝
𝑖=1  ⊇ [a, b]. 

Now it is sufficient to prove ∑ ℓ(𝐽𝑖) ≥
𝑝
𝑖=1  b-a     (2)  

Now a ∈ I = [a, b], there exist open interval J1 = (a1, b1) from the above-mentioned finite no. of intervals 

such that a1 < a≤ b then b1 ∈ I. 

Again, there exist an open interval (a2, b2) from the finite collection J1, J2, ..., Jp such that a2 <b1 < b2. 

Continuing this, we get a sequence of open intervals  

(a1, b1), (a2, b2), ..., (ap ,bp ) from J1, J2, ..., Jp satisfying ai < bi-1 < bi ,i= 2,3,.....,p since the collection is 

finite so the process must stop with an interval satisfying ap < bp-1 < bp and ap <b < bp 

 ∑ ℓ(𝐼𝑛)𝑛  ≥ ∑ ℓ(𝐽𝑖)
𝑝
𝑖=1 = ℓ (a1, b1) + ℓ (a2, b2) +.... ℓ (ap, bp)  

    = (b1 -a1) + (b2 -a2) + ...+ (bp -ap)  

    = bp + (bp-1 – ap) +...+b1 -a2 – a1 
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     > bp – a1  

    > b-a  

=> inf ∑ ℓ(𝐼𝑛)𝑛  ≥ b-a  

=> m*(I) ≥ b-a         (4) 

Hence result is proved in the case when I closed and bounded interval.  

CASE (2) let I be bounded open interval with end points a and b, then for every real no. ɛ> 0 [a+ ɛ, b- ɛ] 

⊂ I ⊂ [a, b]  

=> m*[a+ ɛ, b- ɛ] ≤ m*(I) ≤ m* [a, b]  

=> ℓ [a+ ɛ, b- ɛ] ≤ m*(I) ≤ ℓ [a, b] (by case 1) 

=>b- ɛ -a- ɛ≤ m*(I) ≤b-a  

since ɛ is arbitrary, 

we get b-a ≤ m*(I) ≤ b-a  

=> m*(I) =b-a.  

CASE (3) if I is the unbounded interval, then for each real no. r> 0, we can find bounded closed interval 

J ⊂ I such that ℓ (J)>r  

Now J ⊂ I => m* (J) ≤ m* (I)  

=> ℓ (J) ≤ m* (I)  

=> m* (I) > r since this hold for each real no. r,  

we get m* (I) = ∞ = ℓ(I)  

i.e. outer-measure is of an interval equal to its length.  

1.11 Theorem. Let {𝐴𝑛} be a countable collection of sets of real numbers. Then                          

𝑚∗(𝐴𝑛) ≤ 𝛴 𝑚∗𝐴𝑛.  

Proof. Proof. If one of the sets 𝐴𝑛 has infinite outer measure, the inequality holds trivially. So suppose 

𝑚∗{𝐴𝑛} is finite. Then, given  >  0, there exists a countable collection {𝐼𝑛,𝑖} of open intervals such 

that 𝐴𝑛  𝑈𝑖 𝐼𝑛,𝑖 and 

𝛴𝑖  𝑙(𝐼𝑛,𝑖) <  𝑚
∗(𝐴𝑛) +

휀

2𝑛
 

        by the definition of 𝑚∗{𝐴𝑛}.  

Now the collection [𝐼𝑛,𝑖]𝑛,𝑖  =  𝑈𝑛 [𝐼𝑛,𝑖]𝑖 is countable, being the union of a countable number of 

countable collections, and covers ⋃ 𝐴𝑛𝑛  . Thus 

𝑚∗ (⋃𝐴𝑛
𝑛

 ) 𝛴𝑛,𝑖𝑙(𝐼𝑛,𝑖) 
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= 𝛴𝑛 𝛴𝑖𝑙(𝐼𝑛, 𝑖) 

< ( 𝑚∗(𝐴𝑛) +


2𝑛
)   

= 𝛴𝑛𝑚
∗𝐴𝑛 + 𝛴𝑛



2𝑛
  

= 𝛴𝑛𝑚
∗𝐴𝑛 + 𝜖𝛴𝑛

1

2𝑛
  

=  𝛴 𝑚∗𝐴𝑛  +   

Since  is an arbitrary positive number, it follows that  

𝑚∗(⋃ 𝐴𝑛𝑛  ) ≤ 𝛴 𝑚∗(𝐴𝑛) .  

1.12 Theorem. Outer-measure of singleton set of reals is zero 

Proof: Let 𝐴 =  {𝑎} Then, since 𝐴 = {𝑎}, {𝑎} ⊆  (𝑎 −
1

𝑛
, 𝑎 +

1

𝑛
) ∀𝑛 ∈  𝑁 

  𝑚∗(𝑎) ≤  𝑚 ∗ (𝑎 −
1

𝑛
, 𝑎 +

1

𝑛
) 

  𝑚∗(𝑎) ≤
2

𝑛
 

  0 ≤  𝑚∗(𝑎) ≤
2

𝑛
 for each n.  

In limiting case 𝑚∗(𝑎)  =  0. 

1.13 Theorem. Outer-measure of null set is zero.  

Proof: Since 𝜙 ⊆  ( −
1

𝑛
,
1

𝑛
) ∀𝑛 ∈ 𝑁 

  𝑚∗(𝜙) ≤  𝑚∗ ( −
1

𝑛
,
1

𝑛
 ) 

  𝑚∗(𝜙) ≤
2

𝑛
 

  0 ≤  𝑚∗( 𝜙) ≤
2

𝑛
 for each n. In limiting case 𝑚∗(𝜙)  =  0.  

1.14 Corollary. If A is countable, 𝑚∗ 𝐴 =  0 

Proof. We know that a countable set is the union of a countable family of singleton. Therefore 𝐴 = ∪

[𝑥𝑛], which yields  

𝑚∗𝐴 =  𝑚∗ [∪ (𝑥𝑛)] ≤  𝛴 𝑚∗ [𝑥𝑛] (by the above theorem) 

But as already pointed out outer measure of a singleton is zero. Therefore it follows that 

𝑚∗ 𝐴  0 

Since outer measure is always a non – negative real number, 𝑚∗ 𝐴 =  0.  

1.15 Remark: The Sets 𝑵, 𝒁, 𝑸 has outer-measure zero.  
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1.16 Remark: Prove that [0, 1] is uncountable. 

Proof: Assume on the contrary that the set [0, 1] is countable, then as we know outer-measure of 

countable set is zero, then 𝑚∗[0, 1] =  0, 𝑖. 𝑒, 𝑙[0, 1] =  0  

𝑖. 𝑒. , 1 =  0, a contradiction. therefore [0, 1] is uncountable. 

1.17 Corollary. If 𝑚∗ 𝐴 =  0, then 𝑚∗(𝐴  𝐵) =  𝑚∗𝐵. 

Proof. Using the above proposition 

𝑚∗ (𝐴  𝐵) ≤ 𝑚∗𝐴 +  𝑚 ∗  𝐵 

=  0 + 𝑚∗ 𝐵           (i) 

Also 𝐵  𝐴  𝐵  

Therefore  𝑚∗ 𝐵  𝑚∗ (𝐴  𝐵)        (ii)  

From (i) and (ii) it follows that  

𝑚∗ 𝐵 =  𝑚∗ (𝐴  𝐵) 

Note:- Because of the property m* ( An ) Σ m* An , the function m* is said to be countably Sub-

additive. It would be much better if m* were also countably additive, that is,  

if 𝑚∗ (∪ 𝐴𝑛)  = ∑𝑚
∗ 𝐴𝑛. 

for every countable collection [𝐴𝑛] of disjoint sets of real numbers. If we insist on countable additivity, 

we have to restrict the domain of the function m* to some subset m of the set 2R of all subsets of R. The 

members of m are called the measurable subsets of R. That is, to do so we suitably reduce the family of 

sets on which m* is defined. This is done by using the following definition due to Carathedory. 

1.18 Definition. A set E of real numbers is said to be m* measurable, if for every set A  R, we have  

𝑚∗  𝐴 =  𝑚∗ (𝐴  𝐸)  +  𝑚∗ (𝐴  𝐸𝑐  )  

Since A = (A  E)  (A  Ec),  

It follows from the definition that 

𝑚∗ 𝐴 =  𝑚∗ [(𝐴  𝐸) (𝐴  𝐸𝑐 )]  𝑚∗ (𝐴  𝐸)  +  𝑚∗ (𝐴  𝐸𝑐 )  

Hence, the above definition reduces to: 

 A set E  R is measurable if and only if for every set A  R, we have 

 m* A  m* (A  E) + m* (A  Ec).  

For example  is measurable. 

1.19 Theorem. Prove that 𝜙 is measurable set.  

Proof: Let A be set of reals, then m* A = m* (A  E) + m* (A  Ec)  

Put E = 𝜙 
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m* (A 𝜙) + m* (A  𝜙c) = m* (𝜙 ) + m* (A R)  

    = 0 + m* A  

    = m* A 

This implies 𝜙 is measurable.  

1.20 Theorem. Prove that R is measurable set.  

Proof: Let A be set of reals, then  

m* A = m* (A  E) + m* (A  Ec)  

Put E = R  

m* (A R) + m* (A Rc) = m* (A) + m* (A 𝜙)  

   = m* (A) + m* (𝜙) 

   = m* A + 0  

   = m* A 

This implies R is measurable.  

1.21 Theorem. If m* E = 0, then E is measurable.  

Proof. Let A be any set. Then A  E  E and so  

m* (A  E)  m* E = 0        (i) 

Also A  A  Ec, and so  

m* A  m* (A  Ec) = m* (A  Ec) + m* (A  E)  

as   m* (A  E) = 0 by (i)  

Hence E is measurable. 

1.22 Theorem. Every subset of E is measurable if m* E = 0.  

Proof: Let F be any subset of E, where m* E = 0.  

then since 𝐹 ⊆ 𝐸 

this implies m* F ≤ m* E 

this implies m* F ≤ 0 

Also m* F ≥ 0 

therefore m* F =0.  

this implies F is measurable. 

1.23 Theorem. Every singleton set is measurable.  

Proof: Since outer measure of singleton set is zero and set of measure zero is measurable. Therefore, 

singleton set is measurable.  
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1.24 Theorem. Every countable set is measurable.  

Proof: Since outer measure of countable set is zero and set of measure zero is measurable. Therefore 

countable set is measurable.  

1.25 Theorem. If a set E is measurable, then so is its complement Ec.  

Proof. The definition is symmetrical with respect to Ec, and so if E is measurable, its complement Ec is 

also measurable.  

1.26 Theorem. Union of two measurable sets is measurable.  

Proof. Let E1 and E2 be two measurable sets and let A be any set. Since E2 is measurable, we have 

𝑚∗(𝐴  𝐸1
𝑐 )  =  𝑚∗(𝐴  𝐸1

𝑐  𝐸2 )  +  𝑚
∗(𝐴  𝐸1

𝑐  𝐸2
𝑐 )    (i)  

and since 𝐴  (𝐸1  𝐸2) =  (𝐴  𝐸1) [ 𝐴  𝐸2 𝐸1
𝑐 ]     (ii)  

Therefore by (ii) we have  

𝑚∗[𝐴  (𝐸1 𝐸2)]  𝑚
∗ (𝐴  𝐸1)  +  𝑚

∗ [𝐴  𝐸2  𝐸1
𝑐  ]     (iii)  

Thus  

𝑚∗ [𝐴  (𝐸1 𝐸2)] + 𝑚
∗ (𝐴  𝐸1

𝑐  𝐸2
𝑐  )  

≤  𝑚∗ (𝐴  𝐸1) + 𝑚
∗ (𝐴  𝐸2  𝐸1

𝑐 ) +  𝑚∗ (𝐴  𝐸1
𝑐   𝐸2

𝑐 ) 

= 𝑚∗ (𝐴  𝐸1)  +  𝑚
∗ (𝐴  𝐸1

𝑐  ) (𝑏𝑦 (𝑖)) 

≤ m* A (since E1 is measurable)  

i.e. m* (A  (E1  E2)) + m* (A  (E1  E2)
c)  m* A  

Hence E1  E2 is measurable.  

If E1 and E2 are measurable, then E1  E2 is also measurable.  

In fact we note that E1, E2 are measurable ⇒ 𝐸1
𝑐 , 𝐸2

𝑐 are measurable ⇒ 𝐸1
𝑐  𝐸𝑐 is measurable ⇒

 (𝐸1
𝑐  𝐸2

𝑐 )𝑐  =  𝐸1  𝐸2 is measurable.  

Similarly, it can be shown that if E1 and E2 are measurable, then 𝐸1
𝑐  𝐸2

𝑐  is also measurable.  

1.27 Lemma. Difference of two measurable sets is also measurable.  

Proof: Let E1 and E2 be two measurable sets. Then 𝐸2
𝑐 is measurable and hence                                       

𝐸₁ ∩ 𝐸2
𝑐  =  𝐸₁ –  𝐸₂ is measurable, being the intersection of two measurable sets. 

1.28 Definition. Algebra or Boolean Algebra: - A collection A of subsets of a set X is called an 

algebra of sets or a Boolean Algebra if  

(i) A, B  A => A  B  A  

(ii) A  A => Ac  A  

(iii) For any two members A and B of A, the intersection A  B is in A.  

Because of De Morgan’s formulae (i) and (ii) are equivalent to (ii) and(iii).  
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It follows from the above definition that the collection M of all measurable sets is an algebra. The proof 

is an immediate consequence of Theorems 1.25 and 1.26.  

1.29 Definition. By a Boolean  - algebra or simply a  - algebra or Borel field of a collection of sets, 

we mean a Boolean Algebra A of the collection of the sets such that union of any countable collection of 

members of this collection is a member of A.  

From De Morgan’s formula an algebra of sets is a  - algebra or Borel field if and only if the 

intersection of any countable collection of members of A is a member of A.  

1.30 Lemma. Let A be any set, and 𝐸1, 𝐸2, … . , 𝐸𝑛 a finite sequence of disjoint measurable sets. Then 

𝑚∗ (𝐴  [𝑈 𝑖1
𝑛  𝐸𝑖])  =  𝛴𝑖1

𝑛 𝑚∗(𝐴  𝐸𝑖) 

Proof. We shall prove this lemma by induction on n. The lemma is trivial for  

n = 1. Let n > 1 and suppose that the lemma holds for n – 1 measurable sets Ei.  

Since En is measurable, we have 

𝑚∗ (𝑋)  =  𝑚∗ (𝑋  𝐸𝑛)  + 𝑚
∗ (𝑋  𝐸𝑛

𝑐 ) for every set X  R.  

In particular we may take  

𝑋 =  𝐴  [𝑈𝑖1
𝑛   𝐸𝑖].  

Since 𝐸1, 𝐸2, … . , 𝐸𝑛 are disjoint, we have  

𝑋  𝐸𝑛  =  𝐴  [𝑈𝑖1
𝑛 𝐸𝑖] ∩ 𝐸𝑛 = 𝐴 ∩ 𝐸𝑛  

 𝑋  𝐸𝑛
𝑐  =  𝐴  [𝑈𝑖1

𝑛  𝐸𝑖 ] 𝐸𝑛
𝑐  =  𝐴  [𝑈𝑖=1

𝑛1 𝐸𝑖] 

 Hence, we obtain 𝑚∗ 𝑋 =  𝑚∗(𝐴  𝐸𝑛)  +  𝑚
∗(𝐴  [𝑈𝑖1

𝑛−1𝐸𝑖])   (i) 

But since the lemma holds for 𝑛 –  1 we have  

𝑚∗(𝐴  [ 𝑈𝑖1
𝑛1𝐸𝑖]) = ∑  𝑚∗(𝐴  𝐸𝑖)

𝑛−1

𝑖1

 

Therefore (i) reduces to  

𝑚∗ 𝑋 =  𝑚 ∗ (𝐴  𝐸𝑛)  +  𝛴𝑖1
𝑛−1 𝑚∗(𝐴  𝐸𝑖)  

= ∑𝑖1
𝑛  𝑚∗(𝐴  𝐸𝑖).  

Hence the lemma.  

1.31 Lemma. Let A be an algebra of subsets and {𝐸𝑖 | 𝑖  𝑁} a sequence of sets in A. Then there 

exists a sequence [𝐷𝑖 | 𝑖  𝑁] of disjoint members of A such that  

𝐷𝑖   𝐸𝑖  ( 𝑖  𝑁) 

𝑈𝑖∈𝑁𝐷𝑖  =  𝑈𝑖∈𝑁𝐸𝑖 
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Proof. For every i  N, let  

𝐷𝑛  =  𝐸𝑛 − (𝐸1 𝐸2…… 𝐸𝑛−1)  

= (𝐸𝑛  (𝐸1 𝐸2…… 𝐸𝑛−1))
𝑐  

= 𝐸𝑛  𝐸1
𝑐  𝐸2

𝑐 …… 𝐸𝑛−1
𝑐 

Since the complements and intersections of sets in A are in A, we have each 𝐷𝑛  𝐴. By construction, 

we obviously have 𝐷𝑖   𝐸𝑖 (𝑖  𝑁) 

Let Dn and Dm be two such sets, and suppose m < n. Then Dm  Em, and so  

Dm  Dn  Em  Dn 

= 𝐸𝑚  𝐸𝑛 𝐸1
𝑐 … . . 𝐸𝑚

𝑐 … . 𝐸𝑛−1
𝑐  (𝑢𝑠𝑖𝑛𝑔 (𝑖)) 

= (𝐸𝑚 𝐸𝑚
𝑐 )  … . =    ………  =   

The relation (i) implies 𝑈𝑖𝑁𝐷𝑖 𝑈𝑖∈𝑁𝐸𝑖 

 It remains to prove that 

𝑈𝑖𝑁𝐷𝑖𝑈𝑖∈𝑁𝐸𝑖 

For this purpose let x be any member of 𝑈𝑖∈𝑁𝐸𝑖. Let n denotes the least natural number satisfying x  

En. Then we have 

𝑥  𝐸𝑛 − (𝐸1 𝐸2…… 𝐸𝑛−1) =  𝐷𝑛  𝑈𝑖𝑁𝐷𝑛. 

This completes the proof. 

1.32 Theorem. The collection M of measurable sets is a  - algebra.  

Proof. We have proved already that M is an algebra of sets and so we have only to prove that M is 

closed with respect to countable union. By the lemma proved above each set E of such countable union 

must be the union of a sequence {𝐷𝑛 } of pairwise disjoint measurable sets. Let A be any set, and let 

𝐸𝑛  =  𝑈𝑖𝐼 𝐷𝑖   𝐸. Then En is measurable and 𝐸𝑛
𝑐   𝐸𝑐  . Hence 

𝑚∗ 𝐴 =  𝑚∗(𝐴 𝐸𝑛)  +  𝑚
∗(𝐴  𝐸𝑛

𝑐 )  𝑚∗(𝐴 𝐸𝑛 )  + 𝑚
∗(𝐴  𝐸𝑛

𝑐  ).  

But, by lemma 1.30, 

𝑚∗(𝐴  𝐸𝑛)  =  𝑚
∗[𝐴 (𝑈𝑖1 𝐷𝑖  )]  =  𝛴𝑖1

𝑛  𝑚∗(𝐴  𝐷𝑖) 

Therefore, 

𝑚∗ 𝐴  𝛴𝑖1
𝑛  𝑚∗(𝐴  𝐷𝑖)  +  𝑚

∗(𝐴  𝐸𝑐  ) 

Since the left hand side of the inequality is independent of n, we have  

𝑚∗ 𝐴  𝛴𝑖1
∞  𝑚∗(𝐴  𝐷𝑖) + 𝑚

∗(𝐴  𝐸𝑐 )  

 𝑚∗(𝑈𝑖𝐼
∞  [𝐴  𝐷𝑖])  +  𝑚

∗(𝐴  𝐸𝑐 ) (by countably subadditivity of m*) 

= 𝑚∗( 𝐴 𝑈𝑖𝐼
∞  𝐷𝑖) + 𝑚

∗(𝐴  𝐸𝑐 ) 
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= 𝑚∗(𝐴 𝐸) + 𝑚∗(𝐴  𝐸𝑛
𝑐  ). 

which implies that E is measurable. Hence the theorem. 

1.33 Lemma. The interval (a,  ) is measurable  

Proof. Let A be any set and  

𝐴1  =  𝐴  (𝑎, )  

𝐴2  =  𝐴  (𝑎, )𝑐  =  𝐴  (−  , 𝑎]. 

Then we must show that  

𝑚∗ 𝐴1  + 𝑚
∗ 𝐴2   𝑚

∗ 𝐴. 

 𝐼𝑓 𝑚∗ 𝐴 =   , then there is nothing to prove. If m* A  <  , then given  > 0 there is a countable 

collection {In} of open intervals which cover A and for which  

𝛴𝑙(𝐼𝑛)  𝑚
∗ 𝐴 +   

Let 𝐼𝑛
  =  𝐼𝑛  (𝑎, ) 𝑎𝑛𝑑 𝐼𝑛

  =  𝐼𝑛  (− , 𝑎). Then 𝐼𝑛
  and 𝐼𝑛

  are intervals (or empty) and 𝑙(𝐼𝑛)  =

 𝑙 (𝐼𝑛
 )  +  𝑙(𝐼𝑛

 )  =  𝑚∗( 𝐼𝑛
 )  + 𝑚∗( 𝐼𝑛

 ) 

Since 𝐴1  𝑈𝐼𝑛
 , we have 

𝑚∗ 𝐴1  𝑚
∗(𝑈𝐼𝑛

 )  𝛴 𝑚∗ 𝐼𝑛
 ,    (iii) 

and since, 𝐴2  𝑈 𝐼𝑛
 , we have 

𝑚∗ 𝐴2  𝑚
∗(𝑈 𝐼𝑛

  ) 𝛴 𝑚∗ 𝐼𝑛
 ,    (iv) 

Adding (iii) and (iv) we have 

𝑚∗ 𝐴1  +  𝑚
∗ 𝐴2  𝛴 𝑚

∗ 𝐼𝑛
  +   𝛴 𝑚∗ 𝐼𝑛

  

=  𝛴 (𝑚∗ 𝐼𝑛
  +   𝑚∗ 𝐼𝑛

 ) 

=  𝛴 𝑙 (𝐼𝑛)         [𝑏𝑦 (𝑖𝑖)] 

≤ 𝑚∗ 𝐴 +       [𝑏𝑦 (𝑖)] 

But  was arbitrary positive number and so we must have 𝑚∗ 𝐴1  +  𝑚
∗ 𝐴2  𝑚

∗ 𝐴. 

1.34 Definition. The collection ß of Borel sets is the smallest  - algebra which contains all of the 

open sets. 

1.35 Theorem. Every Borel set is measurable. In particular each open set and each closed set is 

measurable.  

Proof. We have already proved that (a, ) is measurable. So we have  

(𝑎,)𝑐  =  (−∞, 𝑎] measurable. 

Since (−∞, 𝑏) =  𝑈𝑛=1
∞  ((−∞, 𝑏 −

1

𝑛
 ]) and we know that countable union of measurable sets is 

measurable, therefore (- , b) is also measurable. Hence each open interval,  
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(𝑎, 𝑏)  =  ( −∞, 𝑏)  (𝑎,∞) is measurable, being the intersection of two measurable sets. But each open 

set is the union of countable number of open intervals and so must be measurable (The measurability of 

closed set follows because complement of each measurable set is measurable).  

Let M denote the collection of measurable sets and C the collection of open sets. Then 

C  M. Hence ß is also a subset of M since it is the smallest  - algebra containing C . So each element 

of ß is measurable. Hence each Borel set is measurable. 

1.36 Definition. If E is a measurable set, then the outer measure of E is called the Lebesgue Measure 

of E, is denoted by m. Thus, m is the set function obtained by restricting the set function m* to the 

family M of measurable sets. Two important properties of Lebesgue measure are summarized by the 

following theorem. 

1.37 Theorem. Let {𝐸𝑛} be a sequence of measurable sets. Then 

𝑚( 𝐸𝑖) ≤ 𝛴 𝑚 𝐸𝑖  

If the sets En are pairwise disjoint, then  

𝑚( 𝐸𝑖) =  𝛴 𝑚𝐸𝑖  . 

Proof. The inequality is simply a restatement of the sub-additivity of m*. If {Ei }is a finite sequence of 

disjoint measurable sets. So we apply lemma 1.30 replacing A by R. That is , we have 

𝑚∗(𝑅 [𝑈𝑖
𝑛𝐸𝑖]) = 𝛴𝑖1

𝑛  𝑚∗ (𝑅 𝐸𝑖) 

𝑚∗(𝑈𝑖
𝑛𝐸𝑖) =∑𝑚∗𝐸𝑖

𝑛

𝑖

 

and so m is finitely additive.. 

Let {Ei} be an infinite sequence of pairwise disjoint sequence of measurable sets. Then  

And so  𝑈𝑖=1
∞  𝐸𝑖  ⊃  𝑈𝐼=1

𝑛 𝐸𝑛 

𝑚(𝑈𝑖1
∞  𝐸𝑖)  𝑚(𝑈(𝑖  1)

∞  𝐸𝑖)  =  𝛴𝑖1
∞  𝑚 𝐸𝑖 

Since the left-hand side of this inequality is independent of n, we have 

𝑚(𝑈𝑖=1
∞  𝐸𝑖) ≥  𝛴𝑖1

∞  𝑚 𝐸𝑖 

The reverse inequality follows from countable sub-additivity and we have 

𝑚(𝑈𝑖=1
∞  𝐸𝑖) =  𝛴𝑖1

∞  𝑚 𝐸𝑖 

Hence the theorem is proved. 

1.38 Theorem. Let {En} be an infinite sequence of measurable sets such that En+1 ⊂ En for each n. 

Let mE1 < ∞. Then  

m(⋂En

∞

n=1

) =  lim
n→∞

mEn 
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Proof. Let E =  ⋂ Ei
∞
i=1  and let Fi = Ei − Ei−1. Then since {En} is a decreasing sequence. We have 

⋂Fi =  ϕ .  

Also we know that if A and B are measurable sets then their difference A − B = A⋂Bc is also 

measurable. Therefore each Fi is measurable. Thus {Fi} is a sequence of measurable pairwise disjoint 

sets. 

Now             ⋃Fi = ⋃(Ei − Ei+1

∞

i=1

)

∞

i=1

 

                      =⋃(Ei ∩ Ei+1
c

∞

i=1

) 

            =  E1 ∩ (∪ Ei
c) 

                 =  E1 ∩ (⋂Ei

∞

i=1

)

c

 

     =  E1 ∩ E
c 

    =  E1 − E 

Hence 

m(⋃Fi

∞

i=1

) = m(E1 − E) 

⇒ ∑mFi = 

∞

i=1

m(E1 − E) 

                                              ⇒ ∑ m(Ei − Ei+1) =  m(E1 − E) 
∞
i=1          …     (i) 

Since E1 = (E1 − E) ∪ E, therefore  

mE1 = m(E1 − E) + m(E) 

                                 ⇒ mE1 −  mE = m(E1 − E)   (since mE ≤ mE1 < ∞ )  … (ii) 

Again  

Ei = (Ei − Ei+1) ∪ Ei+1 

⇒ mEi = m(Ei − Ei+1) + mEi+1 

                                   ⇒ mEi −  mEi+1 =  m(Ei − Ei+1) ( since Ei+1 ⊂ Ei ) … (iii) 

Therefore (i) reduces to  

                           mE1 −  mE =  ∑ (mEi −  mEi+1)
∞
i=1   ( using (ii)and (iii)) 
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    =  lim
n→∞

∑(mEi −  mEi+1)

∞

i=1

 

                                               = lim
n→∞

[mE1 −  mE2 +  mE2 −  mE3…−mEn+1] 

= lim
n→∞

[mE1 −  mEn+1]  

                                                = mE1 − lim
n→∞

En+1 

                                                 ⇒ mE = lim
n→∞

mEn  

                                                 ⇒ m(⋂ Ei
∞
i=1 ) = lim

n→∞
mEn 

1.39 Remark. Show that the condition m(E1) <∞ is necessary in the above theorems. 

Solution. Let En = [n, ∞) 

Then, E1=  [ 1,∞) 

⟹m(E1) = m[1, ∞)  = ∞ 

We show that the proposition of decreasing sequence does not hold in this case i.e. we want to show that  

m(∩n=1
∞ En) ≠ lim

n→∞
(En) 

Clearly, En+1 ⊂ En for all n 

Now, En = [ n, ∞) ⊃ [ n, 2n] 

⟹ m(En) ≥ m [n, 2n] = n 

⟹ m(En) ≥ n  

⟹ lim
n→∞

m(En) =  ∞   …   (1) 

Now, we claim that  m(∩n=1
∞ En) = m(∩n=1

∞ [n,∞))= 0 

For if, ∩n=1
∞ En ≠ ϕ⟹ there exists x ∈∩n=1

∞ En 

⟹ x ∈ [n, ∞ ) for all n ∈ N 

Let  x∈ R, so by Archmedian  property, we can find a positive integer n0 such that  

n0 ≤ x < n0 + 1 

⟹ x∉ [n0 + 1, ∞ ), a contradiction 

∴∩n=1
∞ En = ϕ 

⟹ m(∩n=1
∞ En ) = 0    … (2) 

From (1) and (2), we have  

m(∩𝑛=1
∞ 𝐸𝑛) ≠ 𝑙𝑖𝑚

𝑛→∞
(𝐸𝑛) 
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S0, theorem does not hold in this case. 

1.40 Theorem. Let {En} be an increasing sequence of measurable sets. i.e. a sequence with 𝐸𝑛  ⊂

 𝐸𝑛+1 for each n. Let mE1  be finite, then  

𝑚(⋃𝐸𝑖

∞

𝑖=1

) = 𝑙𝑖𝑚
𝑛→∞

𝑚𝐸𝑛 . 

Proof. The sets E1, E2- E1, E3- E2, …, En - En+1 are measurable and are pairwise disjoint . Hence  

𝐸1 ∪ (𝐸2 − 𝐸1) ∪ …∪ (𝐸𝑛 − 𝐸𝑛−1) ∪ … 

is measurable and  

                                              𝑚[𝐸1 ∪ (𝐸2 − 𝐸1) ∪ …∪ (𝐸𝑛 − 𝐸𝑛−1) ∪ …] 

= 𝑚𝐸1 + ∑𝑚

𝑛

𝑖=2

(𝐸𝑖 − 𝐸𝑖−1) 

= 𝑚𝐸1 + 𝑙𝑖𝑚
𝑛→∞

∑𝑚(𝐸𝑖 − 𝐸𝑖−1)

𝑛

𝑖=2

 

But  

𝐸1 ∪ (𝐸2 − 𝐸1) ∪ …∪ (𝐸𝑛 − 𝐸𝑛−1) ∪ … is precisely ⋃ 𝐸𝑛
∞
𝑖=1  

Moreover,  

∑𝑚

𝑛

𝑖=2

(𝐸𝑖 − 𝐸𝑖−1) =  ∑(𝑚𝐸𝑖 −𝑚𝐸𝑖−1)

𝑛

𝑖=2

 

= (𝑚𝐸2 −𝑚𝐸1) + (𝑚𝐸3 −𝑚𝐸2) + ⋯+ (𝑚𝐸𝑛 −𝑚𝐸𝑛−1) 

= 𝑚𝐸𝑛 −𝑚𝐸1 

Thus we have  

𝑚 [⋃𝐸𝑖

∞

𝑖=1

] = 𝑚𝐸1 + 𝑙𝑖𝑚
𝑛→∞

[𝑚𝐸𝑛 −  𝑚𝐸1] 

= 𝑙𝑖𝑚
𝑛→∞

 𝑚𝐸𝑛 

1.41 Definition : The symmetric difference of the sets A and B is the union of the sets A-B and B-A . 

It is denoted by  ∆ 𝐵 . 

1.42 Theorem. If  𝑚(𝐸1 ∆ 𝐸2) =  0 and E1  is measurable, then E2 is measurable. Moreover mE2 = 

mE1 . 

Proof . We have  

E2 = [𝐸1 ∪ (𝐸2 − 𝐸1)] − (𝐸1 − 𝐸2)              …(i) 
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By hypothesis, both  E2 – E1  and E1 – E2 are measurable and have measure zero. Since E1 and E2-E1 are 

disjoint, 𝐸1 ∪ (𝐸2 − 𝐸1)  is measurable and   

 𝑚[𝐸1 ∪ (𝐸2 − 𝐸1)] = 𝑚𝐸1 + 0 = 𝑚𝐸1. But, since  

𝐸1 − 𝐸2  ⊂ [𝐸1  ∪ (𝐸2 − 𝐸1)],                

it follows from (i) that E2 is measurable and 

 𝑚𝐸2 = 𝑚[ 𝐸1 ∪ (𝐸1 − 𝐸2)] − 𝑚(𝐸1 − 𝐸2) 

                                                            = 𝑚𝐸1 − 0 = 𝑚𝐸1 . 

This completes the proof. 

1.43 Definition.  Let x and y be real numbers in [0,1]. The sum modulo 1 of x and y , denoted by 

 𝑥
0

    +  𝑦
 

 , is defined by  

 𝑥
0

    +  𝑦
 

=  {
𝑥 + 𝑦 𝑖𝑓 𝑥 + 𝑦 < 1

𝑥 + 𝑦 − 1 𝑖𝑓 𝑥 + 𝑦 ≥ 1
 

It can be seen that 
0
+
 
 is a commutative and associative operation which takespair of numbersin [0,1) into 

numbers in [0,1). 

If we assign to each 𝑥 ∈ [0,1) the angle 2𝜋𝑥 then addition modulo 1 corresponds to the addition of 

angles.  

If E is a subset of [0,1), we define the translation  modulo 1 of E to be the set  

𝐸
0

  + 𝑦
 

 = [z |𝑧 = x 
0
+
 
 y for some x ∈ 𝐸 ]. 

If we consider addition modulo 1 as addition of angles, translation module 1 by y corresponds to rotation 

through an angle of  2𝜋𝑦. 

We shall now show that Lebesgue measure is invariant under translation modulo 1.  

1.44 Definition.  Let x and y be real numbers in [0,1). The sum modulo 1 of x and y, denoted by 

0
    +  𝑦
 

 , is defined by  

𝑥
0

    +  𝑦
 

=  {
𝑥 + 𝑦 𝑖𝑓 𝑥 + 𝑦 < 1

𝑥 + 𝑦 − 1 𝑖𝑓 𝑥 + 𝑦 ≥ 1
 

Clearly 𝑥
0

    +  𝑦
 

∈ [0,1) 
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It can be seen that 
0
+
 
 is a commutative and associative operation which takes pair of numbers in [0,1) 

into numbers in [0,1). 

1.45  Definition. If E is a subset of [0,1), we define the translation modulo 1 of E to be the set  

𝐸
0

  + 𝑦
 

 = [z |𝑧 = x 
0
+
 
 y for some x ∈ 𝐸 ]. 

We shall now show that Lebesgue measure is invariant under translation modulo 1.  

1.46 Lemma. Let 𝐸 ⊂ [0,1) be a measurable set. Then for each 𝑦 ∈ [0,1) the set 𝐸
0

  + 𝑦
 
 is measurable 

and m (𝐸
0

  + 𝑦
 
) = 𝑚𝐸. 

Proof. Let E1= E∩ [0, 1 − 𝑦) and E2 = E ∩ [1 − 𝑦, 1). Then E1 and E2 are disjoint measurable sets 

whose union is E, and so, mE = mE1 + mE2. 

we observe that  

𝐸1

0
  + 𝑦
 

={ 𝑥
0

  + 𝑦
 
: x ∈ 𝐸1}  

=  {
𝑥 + 𝑦 𝑖𝑓 𝑥 + 𝑦 < 1

𝑥 + 𝑦 − 1 𝑖𝑓 𝑥 + 𝑦 ≥ 1.
            𝑥 ∈ 𝐸1        

But for x ∈ 𝐸1, we have x + y < 1 and so  

𝐸1

0
  + 𝑦
 

= { 𝑥 + 𝑦, 𝑥 ∈ 𝐸1} =  𝐸1 + 𝑦. 

and hence  𝐸1

0
  + 𝑦
 

 is measurable. Thus  

m (𝐸1

0
  + 𝑦
 
) = 𝑚(𝐸1 + 𝑦) = 𝑚(𝐸1), 

since m is translation invariant. Also 𝐸2

0
  + 𝑦
 

=  𝐸2 + (𝑦 − 1) and so 𝐸2

0
  + 𝑦
 

 is measurable and 

m(𝐸2

0
  + 𝑦
 
) = 𝑚𝐸2. But  

𝐸
0

  + 𝑦
 

= (𝐸1

0
  + 𝑦)
 

∪ (𝐸2

0
  + 𝑦
 
) 
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And the sets (𝐸1

0
  + 𝑦
 
) and (𝐸2

0
  + 𝑦
 
) are disjoint measurable sets. Hence 𝐸

0
  + 𝑦
 

 is measurable and  

m (𝐸
0

  + 𝑦
 
) = 𝑚[(𝐸1

0
  + 𝑦
 
) ∪ (𝐸2

0
  + 𝑦
 
)] 

= 𝑚(𝐸1

0
  + 𝑦)
 

+ 𝑚(𝐸2

0
  + 𝑦
 
) 

= 𝑚(𝐸1) + 𝑚(𝐸2) 

= 𝑚(𝐸). 

This completes the proof of the lemma.  

1.47 Theorem: Prove that there exists a non-measurable set in interval [0,1). 

Proof: First we define an equivalence relation in the set I= [0,1), By saying that x and y are equivalent 

i.e., 𝑥 ∼ 𝑦 if and only if x-y is a rational number.  

If x-y is a rational number, we say that x and y are equivalent and write x-y. It is clear that 𝑥 ∼ 𝑥 ; 𝑥 ∼

𝑦 ⟹ 𝑦 ∼ 𝑥 𝑎𝑛𝑑 𝑥 ∼ 𝑦 , 𝑦 ∼ 𝑧 ⟹ 𝑥 ∼ 𝑧. Thus ‘ ∼’ is an equivalence relation in I.  

Hence the relation ∼ partitions the set I = [0,1) into mutually disjoint equivalence classes, that is, classes 

such that any two elements of one class differ by a rational number, while any two elements of different 

classes differ by an irrational number.  

Construct a set P by choosing exactly one element from each equivalence classes. Now we claim that P 

is a non-measurable set.  

Let < 𝑟𝑖 >
∞
𝑖 = 0

 be a sequence of the rational numbers in [0,1) with r0 = 0 and define Pi = P 
0
+
 
 ri. 

(translation modulo 1 of P) 

Then P0 = P. 

We further prove that (i)  𝑃𝑖 ∩ 𝑃𝑗 =  ∅, 𝑖 ≠ 𝑗. 

(ii) ⋃ 𝑃𝑛𝑛 = [0, 1) 

Proof: (i) Let 𝑃𝑖 ∩ 𝑃𝑗 ≠  ∅, 𝑖 ≠ 𝑗. 

Let 𝑥 ∈  𝑃𝑖 ∩ 𝑃𝑗 . => 𝑥 ∈ 𝑃𝑖𝑎𝑛𝑑 𝑥 ∈ 𝑃𝑗  

Then∃ 𝑝𝑖, 𝑝𝑗 ∈ 𝑃 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 𝑥 = 𝑝𝑖

0
+
 
𝑟𝑖 

 𝑥 = 𝑝𝑗

0
+
 
𝑟𝑗 
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 𝑝𝑖

0
+
 
𝑟𝑖 = 𝑝𝑗

0
+
 
𝑟𝑗 

 𝑝𝑖-𝑝𝑗 = 𝑟𝑗− 𝑟𝑖 𝑖𝑠 𝑎 𝑟𝑎𝑡𝑖𝑜𝑛𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟. 

 𝑝𝑖~𝑝𝑗𝑖𝑠 𝑎 𝑟𝑎𝑡𝑖𝑜𝑛𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟. 

i.e., 𝑝𝑖~𝑝𝑗 

=> 𝑝𝑖 𝑎𝑛𝑑 𝑝𝑗  𝑎𝑟𝑒 𝑖𝑛 𝑠𝑎𝑚𝑒 𝑒𝑞𝑢𝑖𝑣𝑎𝑙𝑒𝑛𝑐𝑒 𝑐𝑙𝑎𝑠𝑠. 

But P has only one element from each equivalence class, therefore we must have 𝑝𝑖 = 𝑝𝑗 𝑖. 𝑒. , 𝑖 = 𝑗 

But ≠ 𝑗 . Hence a contradiction.  

Hence 𝑃𝑖 ∩ 𝑃𝑗 ≠  ∅, 𝑖 ≠ 𝑗. 

that is, < Pi >is a pair wise disjoint sequence of sets. 

(ii) Clearly each 𝑃𝑖 ⊂ [0, 1) 

⋃ 𝑃𝑖 ⊂ [0, 1).𝑖  Let x be any element of [0, 1) = I.  

But I is partitioned into equivalent classes therefore x lies in one of the equivalence classes. 

 x is equivalent to an element say y of P. 

 x-y is a rational number say ri.  

 x-y = ri 

 x = y + ri 

   = y 
0
+
 
  𝑟𝑖. 

x ∈ 𝑃 
0
+
 
 𝑟𝑖 

 x∈ 𝑃𝑖 

 x is in some 𝑃𝑖. 

𝑇ℎ𝑒𝑟𝑒𝑓𝑜𝑟𝑒 [0, 1) ⊆  ⋃𝑃𝑖
𝑖

 

𝑡ℎ𝑒𝑟𝑒𝑓𝑜𝑟𝑒, [0, 1) =  ⋃𝑃𝑖
𝑖

. 

Now we prove P is non-measurable. 

Assume that P is measurable, then clearly each Pi is measurable. 

And m(Pi) = m (𝑃 
0
+
 
 𝑟𝑖) 

        = m(P) for each i. 

Therefore, 𝑚(⋃ 𝑃𝑖𝑖 ) =  ∑ 𝑚(𝑃𝑖) =  ∑ (𝑃)∞
𝑖=0𝑖  

                                  ={
0    𝑖𝑓 𝑚(𝑃) = 0

∞     𝑖𝑓 𝑚(𝑃) > 0
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But  

𝑚(⋃𝑃𝑖
𝑖

) = 𝑚[(0, 1)] = 𝑙(0,1) = 1, 𝑐𝑜𝑛𝑡𝑎𝑑𝑖𝑐𝑡𝑖𝑜𝑛. 

𝑇ℎ𝑒𝑟𝑒𝑓𝑜𝑟𝑒 𝑃 𝑖𝑠 𝑛𝑜𝑛 − 𝑚𝑒𝑎𝑠𝑢𝑟𝑎𝑏𝑙𝑒 𝑠𝑒𝑡. 

1.48 Example. The cantor set is uncountable with outer measure zero. 

Solution. We already know that cantor set is uncountable. Let Cn denote the union of the closed 

intervals left at the nth stage of the construction. We note that Cn consists of  2𝑛 closed intervals, each 

length 3−𝑛. Therefore  

𝑚∗𝐶𝑛 ≤ 2𝑛. 3−𝑛           ( ∴  𝑚∗𝐶𝑛 = 𝑚
∗(∪ 𝐹𝑛) =  ∑𝑚∗𝐹𝑛 ) 

But any point of the cantor set C must be in one of the intervals comprising the union Cn, for each n ∈

𝑁, and as such 𝐶 ⊂ 𝐶𝑛 for all n ∈ 𝑁. Hence  

𝑚∗𝐶 ≤ 𝑚∗𝐶𝑛  ≤ (
2

3
)
𝑛

 

This being true for each n ∈ 𝑁, letting 𝑛 → ∞ gives 𝑚∗𝐶 = 0. 

1.49   Example. If  E1 and E2 are any measurable sets, show that  

𝑀(𝐸1 ∪ 𝐸2) + 𝑚(𝐸1 ∩ 𝐸2) = 𝑚(𝐸1) + 𝑚(𝐸2). 

Proof. Let A be any set. Since E1 is measurable, 

𝑚∗𝐴 = 𝑚∗(𝐴 ∩ 𝐸1) + 𝑚
∗(𝐴 ∩ 𝐸1

𝑐). 

We set  𝐴 = 𝐸1 ∪ 𝐸2 and we have  

𝑚∗(𝐸1 ∪ 𝐸2) = 𝑚
∗[(𝐸1 ∪ 𝐸2) ∩ 𝐸1] + 𝑚

∗[(𝐸1 ∪ 𝐸2) ∩ 𝐸1
𝑐] 

Adding 𝑚(𝐸1 ∪ 𝐸2) to both sides we have  

𝑚(𝐸1 ∪ 𝐸2) + 𝑚(𝐸1 ∩ 𝐸2) = 𝑚𝐸1 +𝑚
∗[(𝐸1 ∪ 𝐸2) ∩ 𝐸1

𝑐] + 𝑚(𝐸1 ∩ 𝐸2) … (1) 

But  

𝐸2 =  [(𝐸1 ∪ 𝐸2) ∩ 𝐸1
𝑐]  ∪ (𝐸1 ∪ 𝐸2). 

Therefore  

𝑚{[(𝐸1 ∪ 𝐸2) ∩ 𝐸1
𝑐]  ∪ (𝐸1 ∪ 𝐸2)} = 𝑚𝐸2 

Hence (1) reduces to  

  

𝑀(𝐸1 ∪ 𝐸2) + 𝑚(𝐸1 ∩ 𝐸2) = 𝑚(𝐸1) + 𝑚(𝐸2). 
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1.50 Theorem. Let E be any set. Then given ∈ > 0, there is an open set O ⊃ 𝐸 such that 𝑚∗𝑂 <

 𝑚∗𝐸+ ∈ . 

Proof. There exists a countable collection [ In ] of open intervals such that  

𝐸 ⊂  ⋃ 𝐼𝑛
 
𝑛  and  

∑𝑙(𝐼𝑛) < 𝑚∗

∞

𝑛=1

𝐸+ ∈ . 

𝑝𝑢𝑡 𝑂 =⋃I𝑛.

∞

𝑛=1

 

Then O is an open set and  

𝑚∗𝑂 = 𝑚∗ (⋃𝐼𝑛

∞

𝑛=1

) 

≤∑m∗In

∞

𝑛=1

 

=∑l(In) < m∗E+∈

∞

n=1

 . 

1.51 Theorem. Let E be a measurable set. Given ∈> 0, there is an open set  

O ⊃ E  such that m∗(O\E) < ∈. 

Proof. Suppose first that m E < ∞. Then by the above theorem there is an open set O ⊃ E  such that  

m∗O <  m∗E+ ∈ 

Since the sets O and E are measurable, we have  

m∗(O\E) = m∗O −m∗E < ∈. 

Consider now the case when m E = ∞ . Write the set R of real number as a union of disjoint finite 

intervals; that is,  

𝐑 =  ⋃𝐈𝐧.

∞

𝐧=𝟏

 

Then, if En = E ∩ In, m(En) < ∞ . We can, thus, find open sets On ⊃ En such that  

m∗(On − En) <
∈

2n
 . 

Define O =  ⋃On .

∞

n=1

 Clearly O is an open set such that O ⊃ E and satisfies 
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O − E = ⋃On − ⋃En  ⊂

∞

n=1

∞

n=1

⋃(On − En)

∞

n=1

 

m∗(O − E) ≤∑m∗ (
On
En
) <∈

∞

n=1

 . 

𝟏. 𝟓𝟐     𝐅𝛔 𝐚𝐧𝐝 𝐆𝛅 𝐒𝐞𝐭𝐬:  

A set which is countable(finite or infinite) union of closed sets is called an 𝐹𝜎 sets. Note: The class of all 

𝐹𝜎 sets is denoted by 𝐹𝜎. This F stands for ferme(closed) and 𝜎 for summe(sum).  

Example:   1. A closed set.  

2. A countable set  

3. A countable union of 𝐹𝜎 set.  

4. An open interval (a, b) since  

(𝑎, 𝑏)  =  𝑈𝑛=1
∞ [𝑎 +

1

𝑛
 , 𝑏 −

1

𝑛
 ]and hence an open set. 

𝑮𝜹- set: 

A set which is countable intersection of open sets is a 𝐺𝛿 set.  

Note: The class of all 𝐺𝛿 sets is denoted by   This G stands for region and 𝛿for intersection. The 

complement of 𝐹𝜎 set is a 𝐺𝛿 set and conversely.  

Example:   1. An open set in particular an open interval.  

2. A closed set  

3. A countable intersection of 𝐺𝛿 set.  

4. A closed interval [a, b] since  

[𝑎, 𝑏]  =  ⋂𝑛=1
∞  (𝑎 −

1

𝑛
, 𝑏 +

1

𝑛
 ). 

1.53 Theorem. Let E be any set then  

(a) Given ɛ > 0,∃an open set 𝑂 ⊃ 𝐸such that 𝑚∗(𝑂) <  𝑚∗(𝐸) + ɛ  

(𝑏)∃𝑎 𝐺𝛿  𝑠𝑒𝑡 𝐺 ⊃  𝐸such that m*(E) = m*(G). 

Proof: (a) By definition, m* (𝐸)  =  𝑖𝑛𝑓 ∑  𝑙 (𝐼𝑛)𝑛 , where 𝐸 ⊆ ⋃ 𝐼𝑛𝑛  

if m*(E) = ∞, then clearly result is true. If m*(E) < 0, there is a countable collection {In} of open 

intervals such that 

𝐸 ⊆  𝑈𝑛 𝐼𝑛and 𝑚∗(𝐸)  +  ɛ >  ∑ 𝑙 (𝐼𝑛 )𝑛     (1)  

Let 𝑂 =  𝐸 ⊆  𝑈𝑛 𝐼𝑛, then O is an open set and 𝑂 ⊃ 𝐸  

Also 𝑚∗(𝑂) = 𝑚∗(𝐸 ⊆  𝑈𝑛 𝐼𝑛) 



Measurable Sets 23 

≤ ∑𝑚∗(𝐼𝑛) 

𝑛

  

m*(O) < m*(E) + ɛ [from(1)] 

(b) Take ɛ =
1

𝑛
  ∀𝑛 ∈ 𝑁 Then by above part, for each 𝑛 ∈ 𝑁,∃an open set𝑂𝑛 ⊃ 𝐸such that  

𝑚∗(𝑂𝑛) <  𝑚
∗(𝐸) +

1

𝑛
 

 Now define 𝐺 = ∪𝑛=1
∞  𝑂𝑛, then G is a 𝐺𝛿 set.  

Also, since each 𝑂𝑛 ⊃ E 

therefore ∪𝑛=1
∞  𝑂𝑛  ⊃  𝐸 this implies 𝐺 ⊃ 𝐸  

≥ m*(E) ≤ m*(G)     (2)  

Also 𝐺 = ∪𝑛=1
∞  𝑂𝑛  ⊆  𝑂𝑛 ∀𝑛 

𝑚∗(𝐺)  ≤  𝑚∗(𝑂𝑛) for each n 

 <  𝑚∗(𝐸)  +
1

𝑛
, for each n  

in limiting case, we have  

m*(G) ≤ m*(E)       (3)  

Then from (2) and (3), we have  

m*(G) = m*(E).  

1.54  Theorem.  Let E be any set,then the following five statements are equivalent. 

(i) E is measurable. 

(ii) For given  ɛ > 0 , ∃an open set   𝑂 ⊃ 𝐸 such that m*(O – E ) < ɛ 

(iii) There exist a set G in 𝐺𝛿 with 𝐸 ⊂ 𝐺, m*(G – E ) = 0 

(iv) For given ɛ > 0 , ∃ an closed set   𝐹 ⊂ 𝐸 such that m*(E – F ) < ɛ 

(v) There exist a set F in 𝐹𝜎 with 𝐹 ⊂ 𝐸,  m*(E – F ) = 0 

Proof.  Ist we prove (i) implies (ii) 

Let E be a measurable set. 

Now two cases arrive  

Case (i)  m*(E) < ∞. 

By definition, for  given  ɛ> 0,there is a countable collection {In} of open intervals such that 

𝐸 ⊆ ⋃ 𝐼𝑛 
 
𝑛 and  m*(E) + ɛ > ∑ 𝑙𝑛 (𝐼𝑛).......(1) 

Let O = 𝐸 ⊆ ⋃ 𝐼𝑛 
 
𝑛 , then O is an open set and 𝑂 ⊃ 𝐸 
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Also m*(O) =m*( 𝐸 ⊆ ⋃ 𝐼𝑛 
 
𝑛 )                                                                                 

m*(O)  ≤  ∑ 𝑚𝑛 ∗ (𝐼𝑛) 

m*(O) <  m*(E) + ɛ    [from(1)] 

m*(O)-  m*(E) <  ɛ 

O = (𝑂 − 𝐸) ∪ 𝐸 

m*(O) = m*((𝑂 − 𝐸) ∪ 𝐸) = m*(O-E)+m*(E) 

m*(O-E) = m*(O) - m*(E)  

 ⟹ m*(O-E) <  ɛ 

Case (ii) If m*(E) = ∞ 

We know that set of real number can be written as countable union of disjoint open intervals 

𝑅 =  ⋃𝐼𝑛

∞

𝑛=1

 

Then  𝐸 = 𝐸 ∩ 𝑅 

= 𝐸⋂⋃𝐼𝑛

∞

𝑛=1

 

=⋃(𝐸 ∩ 𝐼𝑛)

∞

𝑛=1

 

⟹ 𝐸 = ⋃𝐸𝑛 , 𝑤ℎ𝑒𝑟𝑒 𝐸𝑛 = 𝐸 ∩ 𝐼𝑛

∞

𝑛=1

 

clearly each En is measurable and m(En ) is finite. 

Because 𝐸𝑛 = 𝐸 ∩ 𝐼𝑛 ⊆ 𝐼𝑛 

m*(En ) ≤ l(In) <∞ 

Then by case (i), for each 𝑛 ∈ 𝑁, ∃ an open set 𝑂𝑛 ⊃ 𝐸𝑛 such that 

m*(On - En) <
2𝑛

  

Let us define   𝑂 =  ⋃ 𝑂𝑛
∞
𝑛=1   

Then O is an open set containing E 

Now (O-E) = ⋃ 𝑂𝑛 − ⋃ 𝐸𝑛
∞
𝑛=1

∞
𝑛=1  ⊂ ⋃ (𝑂𝑛 − 𝐸𝑛)

∞
𝑛=1  

m*(O-E) ≤ m*(⋃  ∞
𝑛=1 (𝑂𝑛 − 𝐸𝑛) ) 

               ≤  ∑ 𝑚∗∞
𝑛=1 (𝑂𝑛 − 𝐸𝑛) 
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               ≤  ∑
2𝑛

∞
𝑛=1  

                =  ɛ 

⟹  m*(O-E) < ɛ 

Now (ii) ⟹  (iii) 

Let (ii) holds, then for each 𝑛 ∈ 𝑁, ∃an open set 𝑂𝑛 ⊃ 𝐸such that 

 m*(On-E) <
1

𝑛
 

Let us define = ⋂ 𝑂𝑛
∞
𝑛=1  , then G is a  𝐺𝛿set. 

Also since each 𝑂𝑛 ⊃ 𝐸 

therefore ⋂ 𝑂𝑛 ⊃ 𝐸∞
𝑛=1  this implies 𝐺 ⊃ 𝐸 

 G-E = ⋂ 𝑂𝑛
∞
𝑛=1 − 𝐸 ⊆ 𝑂𝑛 − 𝐸 

m*(G-E) ≤ m*(On-E) < 
1

𝑛
 

Since n is arbitrary 

m*(G-E)  ≤  0 

⟹ m*(G-E) = 0. 

Now (iii) ⟹  (i) 

Let (iii) holds, then for given set E, ∃ a 𝐺𝛿 set 𝐺 ⊃ 𝐸 such that m*(G-E) = 0 

⟹  G - E is measurable. 

Now  E = G- (G-E) 

Now  E is measurable being difference of two measurable sets. 

Thus  (i) ⟺ (ii) ⟺ (iii) 

Now to show (i) ⟹ (iv) 

Let (i) holds, and  ɛ > 0 be given 

then by (ii), for given set Ec, ∃ an open set 𝐺 ⊃ 𝐸
𝑐

 such that m*(G - Ec) < ɛ 

Since 𝐺 ⊃ 𝐸
𝑐

 ⟹ 𝐺
𝑐

⊆ 𝐸 

Let F = Gc 

then F is a closed set contained in E, 

Now E-F = 𝐸 ∩ 𝐹
𝑐

 = EՈG = GՈE = G – Ec 

Now m*(E-F) = m*(G-Ec) < ɛ 

m*(E-F)  < ɛ. 

To Show (iv) ⟹ (v) 

Let (iv) holds, then for each 𝑛 ∈ 𝑁,∃a closed set   𝐹𝑛 ⊂ 𝐸 such that  
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 m*(E – Fn ) <
1

𝑛
 

Let us define 𝐹 = ⋃ 𝐹𝑛
∞
𝑛=1   

Then F is a 𝐹𝜎 set. 

Also, since each 𝐹𝑛 ⊂ 𝐸 ⟹ ⋃ 𝐹𝑛
∞
𝑛=1   ⟹ 𝐹 ⊆ 𝐸 

Now E – F = E - ⋃ 𝐹𝑛
∞
𝑛=1 ⊆ 𝐸 − 𝐹𝑛 

⟹ m*(E-F) ≤  m*(E – Fn ) < 
1

𝑛
 

 ⟹ m*(E-F) ≤  
1

𝑛
 

Since n is arbitrary. 

 m*(E-F) ≤ 0 

 ⟹ m*(E-F) = 0. 

Now (v) ⟹ (i) 

Let (v) holds, then for general E, ∃ a 𝐹𝜎 set F such that  m*(E-F) = 0 

⟹ E-F is measurable. 

𝐸 = (𝐸 − 𝐹) ∪ 𝐹 

⟹ E is measurable. 

This completes the proof. 

(b) Take  ɛ = 
1

𝑛
 ∀𝑛 ∈ 𝑁 

Then by above part, for each 𝑛 ∈ 𝑁, ∃ an open set 𝑂𝑛 ⊃ 𝐸 such that 

m*(On) <  m*(E) + 
1

𝑛
 

Now define 𝐺 =  ⋂ 𝑂𝑛
∞
𝑛=1 , then G is a 𝐺𝛿−set. 

Also since each 𝑂𝑛 ⊃ 𝐸 

therefore⋂ 𝑂𝑛
∞
𝑛=1 ⊃ 𝐸 

this implies 𝐺 ⊃ 𝐸 

⟹ m*(E) ≤ m*(G) ......(2) 

Also  G = ⋂ 𝑂𝑛
∞
𝑛=1 ⊆ 𝑂𝑛∀𝑛 

m*(G) ≤ m*(On) for each n <  m*(E) +
1

𝑛
, for each n in limiting case, we have 

 m*(G) ≤ m*(E)...(3) 

Then from (2) and (3), we have 

m*(G) = m*(E). 
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1.55 Theorem. Let Ebe a set with m* E < . Then E is measurable iff  given > 0 , there is a finite  

union  B of open intervals such that  m*(E B) < 

Proof. Suppose E is measurable and let > 0 be given. The (as already shown) there exists an open set 

O E such that m* (O- E) < 
2


. As m*E is finite, so is m*O. Since the open set O can be written as the 

union of countable (disjoint) open intervals {Ii}, there exists an n  N such that 

1

( )
2

i

i n

l I


 


  (In fact m* O = 

1

( )i

i n

l I


 

    
1

( )
2

i

i n

l I


 


   because m* O < ) 

Set B = ⋃ 𝐼𝑖 .
𝑛
𝑖=1  . Then E B = (E B) (B -E) (O - B) (O -E) .    Hence  

 m*(E B)  m* (⋃ 𝐼𝑖) +
𝑛
𝑖=1  m*(O-E)

2
+
2
= 휀.  

Conversely, assume that for a given > 0 , there exists a finite union B = ⋃ 𝐼𝑖 .
𝑛
𝑖=1  if open intervals with 

m* (E B) < . Then using “Let be any set. The given > 0 there exists an open set O E such 

that m* O < m* E + there is an open  set O E  such that  

 m* O < m* E + (i) 

If we can show that m* (O E) is arbitrary small, then the result will follow from “Let E be 

set. Then the following are equivalent (i) E is measurable and (ii) given > 0 there is an open set O E 

such that m * (O E) < ”.  Write S =⋃ (𝐼𝑖 ∩ 𝑂)
𝑛
𝑖=1 . Then  S B  and  so  

S E = (E - S) (S - E) (E S) (B E) . However,  

E \ S = ( E OC ) ( E BC ) = E B, because E O . Therefore  

S E (E B) (B E) = E B , and as such m* (S E) < . However,  

E S (S E) 

and   so  m* E < m* S + m* (S E) 

<m*S+ii) 

Also,  

O E = (O S) (S E) 

Therefore 

                    m* (O \ E) < m* O m* S +  

                            < m* E + m* S +     (using(i)) 

                            < m* S + + m*S + using(ii)) 

< m*S + + m* S + 

= 3 . 

Hence E is measurable. 
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MEASURABLE FUNCTIONS 

Measurable Function: An extended real valued function f defined on a measurable set E is said to be 

measurable function if {x| f(x) >  𝛼} is measurable for each real number 𝛼. 

2.1 Theorem. A constant function with a measurable domain is measurable. 

Proof: Let f be a constant function with a measurable domain E and Let f : E→ 𝑅 be a constant function 

i.e., f(x) = k ∀ 𝑥 ∈ 𝐸 𝑎𝑛𝑑 𝑘 𝑖𝑠 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡. 

To show that {x| f(x) >  𝛼} is measurable for each real number 𝛼. 

{x| f(x) >  𝛼} = {
𝐸,    𝑘 > 𝛼
𝜑,    𝑘 = 𝛼
𝜑,   𝑘 < 𝛼

 

Since both 𝜑 𝑎𝑛𝑑 𝐸 are measurable, it follows that the set {x| f(x) >  𝛼} and hence f is measurable. 

2.2 Theorem. Let f be an extended real valued function defined on a measurable set E, Then f is 

said to be measurable (Lebesgue function) if for any real 𝜶 any one of the following four 

conditions is satisfied. 

(a) {x| f(x) >  𝛼} is measurable 

(b) {x| f(x) ≥  𝜶} is measurable 

(c) {x| f(x) <  𝛼} is measurable 

(d) {x| f(x) ≤ 𝜶} is measurable. 

Proof: We show that these four conditions are equivalent. First of all we show that (a) and (b) are 

equivalent. Since 

                   {x| f(x) >  𝛼} = {x| f(x) ≤ 𝛼}c 

And also we know that complement of a measurable set is measurable, therefore (a) ⟹(d) and 

conversely. 

Similarly since (b) and (c) are complement of each other, (c) is measurable if (b) is measurable and 

conversely. 

Therefore, it is sufficient to prove that (a) ⟹(b)  and conversely. 

Firstly we show that (b) ⟹ (𝑎). 

The set {x| f(x) ≥  𝛼} is  given to be measurable. 

Now  
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        {x| f(x) >  𝛼} =
1n





{x| f(x) ≥  𝛼 +
1

𝑛
} 

But by (b), {x| f(x) ≥  𝛼 +
1

𝑛
} is measurable. Also we know that countable union of measurable sets is 

measurable. Hence {x| f(x) > 𝛼} is measurable which implies that (b) ⟹(a). 

Conversely, let (a) holds. We have  

                                         {x| f(x) ≥   𝛼} =
1n





{x| f(x) ≥  𝛼 −
1

𝑛
} 

The set {x| f(x) >  𝛼 −
1

𝑛
} is measurable by (a). Moreover, intersection of measurable sets is also 

measurable .  Hence {x| f(x) ≥   𝛼} is also measurable . Thus (a) ⟹ (b). 

Hence the four conditions are equivalent. 

2.3 Remark: We can say that f is measurable function if for any real number 𝜶, any of the four 

conditions in the above theorem holds. 

2.4 Lemma. If 𝜶 is an extended real number then these four conditions imply that  {x| f(x) =  𝜶} is 

also measurable. 

Proof. Let 𝛼 be a real number, then 

                           {x| f(x) =  𝛼} =   {x| f(x) ≥   𝛼} ∩ {x| f(x) ≤ 𝛼}. 

Since {x| f(x) ≥   𝛼} and {x| f(x) ≤ 𝛼} are measurable by conditions (b) and (d), the set {x| f(x) =  𝛼} is 

measurable being the intersection of measurable sets. 

Suppose  𝛼 =  ∞. Then {x| f(x) =  ∞}   =
1n





{x| f(x) >  𝑛} 

Which is measurable by the condition (a) and the fact intersection of measurable sets is measurable. 

Similarly when  = −∞, then  

             {x| f(x) = −∞}   =
1n





{x| f(x) < −𝑛}, which is again measurable by conditions (c).Hence the 

results follows. 

2.5 Theorem: If f is measurable function on each of the sets in a countable collection {Ei} of 

disjoint measurable sets, then f is measurable on E = ⋃ 𝑬𝒊𝒊 . 

Proof: Let E = ⋃ 𝐸𝑖𝑖  . Then E is measurable being countable union of measurable sets is measurable.  

Let 𝛼 be any real number. 

Consider the set {x∈ 𝐸| f(x) >  𝛼} = ⋃ {𝑥 ∈ 𝐸𝑖: 𝑓(𝑥) >  𝛼}𝑖  is measurable. 

Because f is measurable on each Ei. 

 ⋃ {𝑥 ∈ 𝐸𝑖: 𝑓(𝑥) >  𝛼}𝑖  is measurable. 
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 {x∈ 𝐸| f(x) >  𝛼} is measurable. 

Hence f is measurable on E. 

2.6 Theorem: If f is measurable function on E and 𝑬𝟏 ⊆ 𝑬 is measurable set then f is a measurable 

function on E1. 

Proof: Let 𝛼 be any real number. 

Consider the set {x∈ 𝐸1| f(x) >  𝛼} = {x∈ 𝐸| f(x) >  𝛼}∩ 𝐸1 is measurable. 

2.7 Theorem.  If f and g are measurable functions on a common domain E, then the set 

A= {x∈ E: f(x)< g(x)} is measurable. 

Proof. For each rational number r, define 

                   𝐴𝑟 = { x∈ E: f(x) < r < g(x)} 

Or we can write 

                     𝐴𝑟 = { x∈ E: f(x)< r}∩ {x∈ E: g(x)> r} 

Since f and g are measurable on E, so the two sets on R.H.S. are measurable sets is measurable. 

Now, we observe that 

                         {x∈E: f(x) <g(x)} = ⋃ 𝐴𝑟𝑟∈𝑄  

Since the rationals are countable, so A is countable union of measurable sets and so is measurable. 

This proves the theorem. 

2.8 Theorem. A continuous function defined on a measurable set is measurable. 

Proof. Let f be a continuous function defined on measurable set E.  Let 𝛼 be any real number. We now 

claim that {x ∈ E : f(x) ≥  𝛼 } is closed. 

              Let A= { x ∈ E: f(x) ≥  𝛼 }           (1) 

To prove that A is closed, it is sufficient to show that 𝐴′ ⊆ 𝐴.              (2) 

 𝐴′ being derived set of A. 

Let 𝑥0 ∈ 𝐴′ be arbitrary element. Then 𝑥0 ∈ 𝐴′ implies 𝑥0 is limit point of A. 

It implies that there exist a sequence {𝑥𝑛} whose elements 𝑥𝑛 ∈ 𝐴 such that 

lim
𝑛→∞

𝑥𝑛 = 𝑥0 

Moreover, f is continuous at 𝑥0; it follows that by definition of continuity 𝑥𝑛 → 𝑥0  implies 𝑓(𝑥𝑛)→

 𝑓(𝑥0)                 (3) 

By (2), we see that 𝑥𝑛 ∈ A   for all n ∈ N. 

⇒ f(𝑥𝑛) ≥  𝛼  for all n∈ N. 

⇒ lim
𝑛→∞

𝑓𝑥𝑛 ≥  𝛼 
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⇒ 𝑓(𝑥0) ≥  𝛼 by virtue of (3) 

⇒ 𝑥0 ∈ 𝐴 by (1) 

Further any 𝑥0 ∈ 𝐴′ implies 𝑥0 ∈ 𝐴 

⇒ 𝐴′ ⊆ 𝐴 

⇒ A is closed 

⇒A is measurable 

⇒{x ∈ E: f(x) ≥ 𝛼 } is measurable. 

Hence a continuous function f is measurable on E. 

Converse of above theorem is not true, that is, A measurable function need not be continuous. 

2.9 Example.  Consider a function f: R → [0,1]  

defined by f(x) = {  
𝟏   𝒊𝒇 𝟎 ≤ 𝒙 ≤ 𝟏
𝟎   𝒊𝒇 𝒐𝒕𝒉𝒆𝒓𝒘𝒊𝒔𝒆  

. 

Clearly function is not continuous since 0 is the point of discontinuity. 

For any real number 𝛼, 

                 {x ∈N: f(x) > 𝛼 }= {
𝜑 ,      𝛼 ≥ 1 
𝑅,        𝛼 < 0

 [0,1),   𝛼 ≤ 0 < 1
  

Since R, 𝜑, [0,1) are measurable implies f is measurable function on E. 

2.10 Theorem.  Let f  be a function defined on a measurable set E then f is measurable iff for any 

open set G in R the inverse image f-1 (G) is measurable set. 

Proof. Let f be a measurable function and let G be any set in R. Since every open sets can be written 

as countable union of disjoint open intervals. 

Suppose, G = ⋃ 𝐼𝑛𝑛  = ⋃ (𝑎𝑛, 𝑏𝑛)𝑛  

Then f-1 (G) = f-1(⋃ 𝐼𝑛𝑛 ) = ⋃  { 𝑓−1(𝐼𝑛𝑛 )} 

                                       = ⋃ { 𝑥: 𝑓(𝑥) ∈ 𝐼𝑛}𝑛  

                                      = ⋃  {x ∶  f(x)  ∈ (𝑎𝑛, 𝑏𝑛)}𝑛  

but  {x : f(x) ∈ (𝑎𝑛, 𝑏𝑛)} = {x : 𝑎𝑛 < 𝑓(𝑥) < 𝑏𝑛} 

                                        = {x : 𝑓(𝑥) > 𝑎𝑛}∩ {x : 𝑓(𝑥) < 𝑏𝑛} 

Since f is measurable function. So both sets on R.H.S. are measurable and hence 

 {x : f(x) ∈ (𝑎𝑛, 𝑏𝑛)} is measurable. 

Again f-1 (G) is measurable.  [ since countable union  of measurable sets is measurable ] 



32 Measure and Integration Theory 

Conversely:-  Let f-1 (G)  be measurable for every open set G in R. We have to prove that f is 

measurable function. 

Take G = (𝛼,∞) where 𝛼 is any real no. 

Then f-1(𝛼,∞) is measurable  

 that is, {x : f(x) ∈ (𝛼,∞)} is measurable  

that is , {x : f(x) > 𝛼} is measurable. 

Thus f is measurable function. 

2.11 Theorem.  Let f be continuous and g be measurable function then fog is measurable. 

Proof. Let 𝛼 be any real number then  

     {x : fog(x) > 𝛼} = {x : f(g(x)) > 𝛼} 

                               =  {x : f(g(x)) ∈ (𝛼,∞)}                   

                               =  {x : g(x) ∈ f-1(𝛼,∞)}. 

Now, (𝛼,∞) is open subset of R and f is continuous implies f-1(𝛼,∞) is open set. 

 Hence, it can be written as countable union of disjoint open intervals say  

                    f-1(𝛼,∞) = ⋃ 𝐼𝑛𝑛  = ⋃ (𝑎𝑛, 𝑏𝑛)𝑛 . 

     Therefore, 

                   {x : fog(x) > 𝛼} =  {x : g(x) ∈ ⋃ 𝐼𝑛𝑛 } = g -1 (⋃ 𝐼𝑛)𝑛  

                                              = ⋃ 𝑔−1 (𝐼𝑛)𝑛  

                                              = ⋃  {x ∶  g(x)  ∈  𝐼𝑛}𝑛  

                                             = ⋃  {x ∶  g(x)  ∈  (𝑎𝑛, 𝑏𝑛)}𝑛  

                                             = ⋃  {x ∶ 𝑎𝑛 <  𝑔(x) < 𝑏𝑛)}𝑛  

                                       = ⋃  {x ∶  g(x) > 𝑎𝑛)}𝑛 ∩ ⋃  {x ∶  g(x) < 𝑏𝑛)}𝑛 . 

Since g is measurable function. Both sets on R.H.S. are measurable and their intersection is measurable. 

Also countable union  of measurable sets is measurable. Hence the result. 

2.12 Definition. A function f is said to be a step function iff  

f(x) = Ci , 𝜉𝑖−1 < x <  𝜉𝑖for some subdivision of [a, b] and some constants Ci . 

Example: A function f : [0, 1] → 𝑅 defined as f(x) = {
𝛼,   𝑎 ≤ 𝑥 ≤ 𝑐
𝛽,   𝑐 ≤ 𝑥 ≤ 𝑏

 where 𝛼, 𝛽 are constant, f is a step 

function. 

Remark: Every step function is a measurable function. 
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2.13 Theorem. For any real no c and two measurable real- valued functions, f and g, the functions  

f +c, cf, f+g, f-g,  fg and f/g (g≠ 𝟎 ), |𝒇| are all measurable. 

Proof. We are given that f is measurable function and c ais any real number. Then for any real number 𝛼 

                    {x| f(x) +𝑐 >  𝛼} =  {x| f(x) >  𝛼 − 𝑐}  

But {x| f(x) >  𝛼 − 𝑐} is measurable by the condition (a) of the definition. Hence                     

 {x| f(x) +𝑐 >  𝛼}  and so | f(x) +𝑐 is measurable.we next consider the function cf . in case c= 0, cf is 

the constant function 0 and hence is measurable since every constant function is continuous and so 

measurable. In case c > 0 we have  

                                   {x| cf(x) >  𝛼} =  {x| f(x) >
α

c
}, and so measurable.  

In case c < 0, we have {x| cf(x) >  𝑟} ={x| f(x)<
𝑟

𝑐
 } and so measurable. 

Now if f and g are two measurable real valued functions defined on the same domain, we shall show that 

f+g is measurable. To show that it is sufficient to show that the set  

{x| f(x)+𝑔(𝑥) > 𝛼} is measurable. 

if  f(x) +g(x)> 𝛼, then | f(x) >  𝛼 − 𝑔(𝑥) and by he cor. of the axiom of Archimedes there is a rational 

number r such that  𝛼 − 𝑔(𝑥) <r<f(x) 

since the functions f and g are measurable , the sets {x| f(x) >  𝑟} and {x| f(x) >  𝛼 − 𝑟} are measurable. 

Therefore, there intersection Sr={x| f(x) >  𝛼 − 𝑐}∩ {x| f(x) >  𝛼 − 𝑟}  also measurable. 

It can be shown that  {x|f(x)+𝑔(𝑥) > 𝛼 } =∪ {Sr | r is rational}  

Since the set of rational is countable and countable union of measurable sets is measurable , the set 

 ∪ {Sr | r is rational} and hence {x|f(x)+𝑔(𝑥) > 𝛼 }is measurable which proves that  

f(x) +g(x) is measurable. From this part it follows that f- g = f (-g) is also measurable, since when g is 

measurable (-g) is also measurable. Next we consider fg. 

The measurability of fg follows that from the identity fg =
1

2

2 2 2[( ) ]f g f g   , if we prove that f2 

is measurable when f is measurable. For this it is sufficient to prove that  

{x|∈ 𝐸|f2(x) >  𝛼},  𝛼 is real number, is measurable.  

Let 𝛼 be a negative real number. Then it is clear that the set {x|f2(x) >  𝛼} = E (domain of the 

measurable function f). But E is measurable by the definition of f. Hence {x|f2(x) >  𝛼} is measurable 

when 𝛼 < 0. 

Now let 𝛼 ≥ 0, then {x|f2(x) >  𝛼}= {x| f(x) > √𝛼} ∪{x| f(x) < −√𝛼}. 

Since f is measurable, it follows from this equality that {x|f2(x) >  𝛼} is measurable for 𝛼 ≥ 0. 

Hence f2  is also measurable when f is also measurable. Therefore, the theorem follows from the above 

identity, since measurability of f and g imply the measurability of f+g. 
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Consider  
𝑓

𝑔
(g≠ 0) = f. 

1

𝑔
 

First we have to prove that 
1

𝑔
  is measurable. 

Consider the set {𝑥 ∶ (
1

𝑔
) (𝑥) > 𝛼} = {𝑥 ∶  

1

𝑔(𝑥)
> 𝛼}  

             =

{
 
 

 
 

{𝑥: 𝑔(𝑥) > 0}𝑖𝑓 𝛼 = 0

{𝑥: 𝑔(𝑥) > 0} ∩ {𝑥: 𝑔(𝑥) <
1

𝛼
} 𝑖𝑓 𝛼 > 0

{𝑥: 𝑔(𝑥) > 0} ∪ {{𝑥: 𝑔(𝑥) > 0} ∩ {𝑥: 𝑔(𝑥) <
1

𝛼
}} 𝑖𝑓 𝛼 < 0

 

 Since g is measurable in each case ,i.e., {𝑥 ∶ (
1

𝑔
) (𝑥) > 𝛼}is measurable. 

 
1

𝑔
 is measurable. 

Since f and 
1

𝑔
 are measurable. 

 
𝑓

𝑔
 is measurable. 

Now If f is measurable then |f| is also  measurable. 

It suffices to prove that measurability of the set {x| f(x) >  𝛼}= E (domain of f) 

But E is assumed to be measurable. Hence {x| f(x) >  𝛼}={x| f(x) >  𝛼}∪{x| f(x)< −𝛼 } 

The right hand side of the equality is measurable since f is measurable. Hence {x| f(x) >  𝛼}is 

measurable. Hence |f| is measurable. 

2.14 Remark: Converse of (vii) is not true. 

Example: Let P be a non-measurable subset of [0, 1) = E 

Define a function f : E→ R as 

f(x) = {
𝟏   𝒊𝒇 𝒙 ∈ 𝑷

−𝟏   𝒊𝒇 𝒙 𝒏𝒐𝒕 𝒃𝒆𝒍𝒐𝒏𝒈𝒔 𝒕𝒐 𝑷
 

 f is not measurable because {𝑥: 𝑓(𝑥) > 0} =  {𝑥: 𝑓(𝑥) = 1} = 𝑃 𝑤ℎ𝑖𝑐ℎ 𝑖𝑠 𝑛𝑜𝑛 − 𝑚𝑒𝑎𝑠𝑢𝑟𝑎𝑏𝑙𝑒. 

Also, for any real 𝛼, {𝑥: |𝑓|(𝑥) > 𝛼} = {𝑥: |𝑓(𝑥)| > 𝛼} = {
𝜑, 𝑖𝑓 𝛼 ≥ 1
𝐸, 𝑖𝑓 𝛼 < 1

 

Since E and 𝜑 are measurable. 

 {𝑥: |𝑓|(𝑥) > 𝛼} 𝑖𝑠 𝑚𝑒𝑎𝑠𝑢𝑟𝑎𝑏𝑙𝑒. 

2.15 Theorem. Let  
1{ }n nf 


 be  a  sequence of measurable functions. Then sup{f1,f2,…,fn}, inf 

{f1,f2,…,fn}, sup,inf , lim limn n
n nn

f and f are measurable. 

Proof. Define a function M(x) =  𝑠𝑢𝑝{𝑓1(𝑥), 𝑓2(𝑥),… , 𝑓𝑛(𝑥)} we shall show that  

{x| M(x)> 𝛼}is measurable. In fact {x| M(x)> 𝛼}= ⋃ {𝑥: 𝑓𝑖(𝑥) > 𝛼}𝑛
𝑖  
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Since each fi is measurable, each of the set {x| fi(x)> 𝛼}is measurable and therefore their union is also 

measurable. Hence {x| M(x)> 𝛼} and so M(x) is measurable. Similarly we define the function m(x) = 

inf {f1,f2,,,,fn}, since {x| m(x)< 𝛼} = ⋃ {𝑥: 𝑓𝑖(𝑥) < 𝛼}𝑛
𝑖  and  

since {x| fi(x)< 𝛼}is measurable on account of the the measurability of fi, it follows that {x| m(x)< 𝛼} 

and so  m(x) is measurable . Define a function M’(x) = sup ( )n
n

f x = sup{f1,f2,,,,fn} 

We shall show that the set {x| M’(x)> 𝛼} is measurable for any real 𝛼. 

Now {x| M’(x)> 𝛼}= ⋃ {𝑥: 𝑓𝑛(𝑥) > 𝛼}∞
𝑛=1  is measurable, since each fn  is measurable. 

Similarly if we define m’(x) = inf ( )n
n

f x , then {x| m’(x)< 𝛼}= ⋃ {𝑥: 𝑓𝑛(𝑥) < 𝛼}∞
𝑛=1  and therefore 

measurability of fn  implies that of m’(x). Now since 𝑙𝑖𝑚̅̅̅̅̅𝑓𝑛 =
𝑖𝑛𝑓
𝑛

𝑠𝑢𝑝
𝑘 ≥ 𝑛

𝑓𝑘 and  

𝑙𝑖𝑚𝑓𝑛 =
𝑠𝑢𝑝
𝑛

𝑖𝑛𝑓
𝑘 ≥ 𝑛

𝑓𝑘, the upper  and lower limit are measurable. 

2.16 Corollary: If {fn} is a sequence of measurable functions converging to f. Then f is also 

measurable. 

Proof: Since{fn} converges to f ,i.e., lim
𝑛→∞

𝑓𝑛 = 𝑓 

Then 𝑙𝑖𝑚̅̅̅̅̅𝑓𝑛 = 𝑙𝑖𝑚𝑓𝑛 = lim
𝑛→∞

𝑓𝑛 

i.e., f =  𝑙𝑖𝑚̅̅̅̅̅𝑓𝑛 = 𝑙𝑖𝑚𝑓𝑛 

Hence f is measurable because 𝑙𝑖𝑚̅̅̅̅̅𝑓𝑛  𝑎𝑛𝑑 𝑙𝑖𝑚𝑓𝑛𝑎𝑟𝑒 𝑚𝑒𝑎𝑠𝑢𝑟𝑎𝑏𝑙𝑒. 

2.17 Corollary: The set of points on which a sequence {fn} of measurable functions converges is 

measurable. 

Proof: By above theorem 𝑙𝑖𝑚̅̅̅̅̅𝑓𝑛  𝑎𝑛𝑑 𝑙𝑖𝑚𝑓𝑛𝑎𝑟𝑒 𝑚𝑒𝑎𝑠𝑢𝑟𝑎𝑏𝑙𝑒. 

 𝑙𝑖𝑚̅̅̅̅̅𝑓𝑛 − 𝑙𝑖𝑚𝑓𝑛 𝑖𝑠 𝑚𝑒𝑎𝑠𝑢𝑟𝑎𝑏𝑙𝑒. 

𝑇ℎ𝑒𝑟𝑒𝑓𝑜𝑟𝑒, {𝑥: [𝑙𝑖𝑚𝑓𝑛 − 𝑙𝑖𝑚𝑓𝑛](𝑥) = 𝛼} 𝑖𝑠 𝑚𝑒𝑎𝑠𝑢𝑟𝑎𝑏𝑙𝑒 ∀𝛼. 

𝐼𝑛 𝑃𝑎𝑟𝑡𝑖𝑐𝑢𝑙𝑎𝑟, 𝑓𝑜𝑟 𝛼 = 𝑐 

{𝑥: [𝑙𝑖𝑚𝑓𝑛 − 𝑙𝑖𝑚𝑓𝑛](𝑥) = 0} 𝑖𝑠 𝑚𝑒𝑎𝑠𝑢𝑟𝑎𝑏𝑙𝑒. 
𝑖.e.,  

{𝑥: [𝑙𝑖𝑚𝑓𝑛(𝑥) = 𝑙𝑖𝑚𝑓𝑛(𝑥)]} 𝑖𝑠 𝑚𝑒𝑎𝑠𝑢𝑟𝑎𝑏𝑙𝑒. 
𝑖.e., set of these points for which{fn}converges is measurable. 

2.18 Definition. Let f and g be measurable functions. Then we define 

   𝑓+= Max (f, 0) 

                            𝑓− = Max (-f, 0)  

                           f ∨g =  
𝑓+𝑔 +|𝑓−𝑔|

2
    i.e. Max (f, g)    and 

                        f ∧g =  
𝑓+𝑔 −|𝑓−𝑔|

2
    i.e. min (f, g) 
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2.19 Theorem. Let f be a measurable function. Then  f


and 𝑓−  are both measurable. 

Proof.  Let us suppose that f > 0 . Then we have  

f = f


 − 𝑓−  (i) 

Now let us take f to be negative. 

 Then                          f


=  Max (f, 0) = 0,                                                                       (ii) 

                                  f


 =  Max (-f, 0) = -f 

Therefore on subtraction f = f


 −𝑓−  

In casef = 0 , then f


= 0, 𝑓− = 0.                                                                                   (iii) 

Therefore f = f


 −𝑓−  

Thus for all f we have, f = f


 −𝑓−    

Also adding the components of (i) we have 

                             f =  |f|  = f


 +𝑓−                                                                               (v) 

since f is positive. And from (ii) when f is negative we have 

f


 +𝑓−    = 0 -𝑓−  = 𝑓−  = |f|                                                                                          (vi) 

In case f is zero, then  

f


 +𝑓−  = 0 + 0 = 0 = |f|  (vii) 

That is for all f, we have  

|f|  = f


 +𝑓−  (viii) 

Adding (iv) and (viii) we have f + |f| = 2 f


, 

f


= 
1

2
(f + |f| )                                                                                                                    (ix) 

Similarly on subtracting we obtain   f


 = 
1

2
(f − |f| )                                                         (x) 

Since measurability of f implies the measurability of | f | it is obvious from (ix) and (x) that f


and f


 are 

measurable. 
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2.20 Theorem. If f and g are two measurable functions, then f ∨g and f ∧g are measurable. 

Proof. We  know  that 

                        f∨g =  
𝑓+𝑔 +|𝑓−𝑔|

2
 

                    

                    f ∧g =  
𝑓+𝑔 −|𝑓−𝑔|

2
 

Now measurability of f _ measurability of |f|. Also if f and g are measurable, then f+g, f-g are 

measurable. Hence f∨g and f ∧g are measurable. 

2.21 Definition. Characteristic function of a set E is defined by ( )

1,

0,
E X

x E

x E


 
  

 
 

This is also known as indicator function. 

2.22 Examples of measurable function  

Example. Let E be a set of rationals in [0,1]. Then the characteristic function ( )

1,

0,
E X

x E

x E


 
  

 
 is 

measurable. 

Proof. For the set of rationals in the given interval, we have ( )

1,

0,
E X

x E

x E


 
  

 
 

It is sufficient to prove that { x | 
( )E X >  𝛼} is measurable for any real 𝛼. 

Let us suppose first  𝑡ℎ𝑎𝑡 𝛼 ≥ 1. Then { x | 
( )E X >  𝛼} ={ x | 

( )E X >  1} 

Hence the set { x | 
( )E X >  𝛼}  is empty in this very case. But outer measure of any empty set is zero. 

Hence for 𝛼 ≥ 1, the set { x | 
( )E X >  𝛼} and so

( )E X  is measurable . 

Further let 0≤ 𝛼 ≤ 1. Then { x | 
( )E X >  𝛼} = E 

But E is countable and therefore measurable. Hence 
( )E X  is measurable. 

Lastly, let𝛼 ≤ 0. Then { x | 
( )E X >  𝛼} = [0,1] and therefore measurable. Hence the result. 

2.23 Theorem. Characteristic function A  is measurable if and only if A is measurable. 

Proof. Let A be measurable. Then 
1,

( )
0,

A

x A
x

x A


 
  

 
 

Hence it is clear from the definition that domain of A   is A ∪Ac which is measurable due to the 

measurability of A. Therefore, if we prove that the  
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set {x | 
( )A x > 𝛼} is measurable for any real 𝛼, we are through. 

Let 𝛼 ≥0 . Then {x |
( )A x >  }= {x |

( )A x = 1}=A(by the definition of Characteristic function.) 

But A is given to be measurable. Hence for 𝛼 ≥0. The set  {x |
( )A x > 𝛼 } is measurable. 

Now let us take 𝛼 < 0 . Then {x | 
( )A x >  }= A∪AC  

Hence {x | 
( )A x >  } is measurable for 𝛼 < 0 also, since A ∪AC has been proved to be measurable. 

Hence if A is measurable, then A   is also measurable. Conversely, let us suppose that 
( )A x  is 

measurable. That is,  

the set {x | 
( )A x > 𝛼 } is measurable for any real 𝛼. 

Let 𝛼 ≥0 . Then {x | 
( )A x >  }= {x | 

( )A x = 1}= A 

Therefore, measurability of{x |
( )A x >  } implies that of the set A for 𝛼 ≥0 . Now consider 𝛼 < 0. Then 

{x | 
( )A x >  }= A∪AC 

Thus measurability 
( )A x  of implies measurability of the set A∪AC which imply A is measurable. 

2.24 Simple Function: Let f be a real valued function defined on X. If the range of f is finite. We say 

that f is a simple function. 

Let E⊆X and put  ( )

1,

0,
E X

x E

x E


 
  

 
 

Suppose the range of f consists of the distinct number c1, c2, …, cn. 

Let Ei = {𝑥: 𝑓(𝑥) = 𝑐𝑖}(𝑖 = 1, 2, … , 𝑛) 

Then f = ∑ 𝑐𝑖
𝑛
𝑖=1 𝜒𝐸𝑖 

i.e., every simple function is a finite linear combination of characteristic function. It is clear that f is 

measurable if and only if the sets E1, E2, …, En are measurable. 

2.25 Remarks:  

1. Every step function is a simple function. 

2. Every simple function is measurable. 

Proof: Let f be a simple function defined as above. 

Then we have 

f(x) = ∑ 𝑐𝑖
𝑛
𝑖=1 𝜒𝐸𝑖(x) 

       = 𝑐1𝜒𝐸1(𝑥) + 𝑐2𝜒𝐸2(𝑥) + ⋯+ 𝑐𝑛𝜒𝐸𝑛(𝑥) 

∴ 𝑓(𝑥) =  𝑐1, 𝑥 ∈ 𝐸1 

𝑓(𝑥) =  𝑐2, 𝑥 ∈ 𝐸2 

∴ 𝑓(𝑥) =  𝑐𝑖, 𝑥 ∈ 𝐸𝑖 
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∴ 𝐸𝑖 = {𝑥: 𝑓(𝑥) = 𝑐𝑖} 

Since each Ei is measurable. Thus 𝜒𝐸𝑖 is measurable because 𝜒𝐴 is measurable if and only if A is 

measurable. 

Hence f is measurable. 

3. Characteristic function of measurable set is a simple function. 

4. Product of the simple function and finite linear combination of simple functions is again a 

simple function. 

2.26 Theorem. (Approximation Theorem). For every non-negative measurable function f, there 

exists a non-negative non-decreasing sequence {fn } of simple functions such that 𝐥𝐢𝐦
𝒏→∞

𝒇𝒏(𝒙) = 𝒇(𝒙), 

x ∈E 

In the general case if we do not assume non-negativeness of f , then we say For every measurable 

function f, there exists a sequence {fn }, n ∈N of simple function which converges (pointwise) to f . i.e. 

“Every measurable function can be approximated by a sequence of simple functions.” 

Proof. Let us assume that f(x) ≥0 and x ∈E . Construct a sequence 

fn(x) = {
𝑖−1

2𝑛
, 𝑓𝑜𝑟 

𝑖−1

2𝑛
≤ 𝑓(𝑥) <

𝑖

2𝑛
𝑓𝑜𝑟 𝑖 = 1,2  , 𝑛2𝑛

𝑛,     𝑓(𝑥) ≥ 𝑛
}  for every n ∈N. 

If we take n = 1, then 

                     

        f1 (x)   =    {
𝑖−1

2
, 𝑓𝑜𝑟 

𝑖−1

2
≤ 𝑓(𝑥) <

𝑖

2
𝑓𝑜𝑟 𝑖 = 1,2 

1,     𝑓(𝑥) ≥ 1
}   

That is, f1(x) = {

0, 𝑓𝑜𝑟 0 ≤ 𝑓(𝑥) <
1

2
 

1

2
,     𝑓𝑜𝑟 

1

2
≤ 𝑓(𝑥) < 1

1   𝑓𝑜𝑟 𝑓(𝑥) ≥ 1

} 

Similarly taking n = 2, we obtain 

f2(x) = {
𝑖−1

4
, 𝑓𝑜𝑟 

𝑖−1

4
≤ 𝑓(𝑥) <

𝑖

4
 𝑓𝑜𝑟 𝑖 = 1,2, , ,8 

2,     𝑓(𝑥) ≥ 2
} 

That is,  

f2(x)=  

{
 
 
 

 
 
 0 𝑓𝑜𝑟  0 ≤ 𝑓(𝑥) <

1

4
1

4
 𝑓𝑜𝑟 

1

4
 ≤ 𝑓(𝑥) <

1

2
…………………
……………… . .

7

4
 𝑓𝑜𝑟 

7

4
 ≤ 𝑓(𝑥) < 2

2 𝑓𝑜𝑟 𝑓(𝑥) ≥ 2 }
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Similarly we can write f3(x) (x) and so on. Clearly all fn are positive whenever f is positive and also it is 

clear that fn  ≤ fn+1. Moreover fn takes only a finite number of values. Therefore {fn} is a sequence of 

non-negative, non decreasing functions which assume only a finite number of values. 

Let us denote 

                          Eni = 𝑓−1 [
𝑖−1

𝑛
,
𝑖

𝑛
] = {𝑥 ∈ 𝐸| 

𝑖−1

2
≤ 𝑓(𝑥) <

𝑖

2
} 

and  

               En = 𝑓−1[𝑛.∞)  =  {𝑥 ∈ 𝐸|𝑓(𝑥) ≥ 𝑛} 

Both of them are measurable. Let 

                                                 

                                          
2

1

1

2

n

n ni

n

n E En
i

i
f n 




       for every n ∈N . 

Now  
2

1

1

2

n

ni

n

En
i

i





 is measurable, since 

ni
E   has been shown to be measurable and characteristic 

function of a measurable set is measurable. Similarly 
nE  is also measurable since 

nE
 is 

measurable. Hence each fn is measurable. Now we prove the convergence of this sequence. 

Let f(x) < ∞. That is f is bounded. Then for some n we have  

                     
𝑖−1

2𝑛
≤ 𝑓(𝑥) <

𝑖

2𝑛
 

                   
𝑖−1

2𝑛
 - 
𝑖−1

2𝑛
≤ 𝑓(𝑥) -   

𝑖−1

2𝑛
<

𝑖

2𝑛
  

                   0 ≤f(x) -   
𝑖−1

2𝑛
<

𝑖

2𝑛
 

                   0 ≤f(x) – fn(x) <
𝑖

2𝑛
 (by the def of fn (x)) 

                  f(x) ≤ fn (x) < 휀 

or|𝑓(𝑥) − 𝑓𝑛(𝑥)| ≤
1

2𝑛
< 휀∀𝑛 ≥ 𝑚 𝑎𝑛𝑑 𝑥 ∈ 𝐸. 

since m does not depend upon point. 

Therefore, convergence is uniform. 

Let us suppose now that f is not bounded. Then f(x) = ∞ 

 f(x) ≥ 𝑛 𝑓𝑜𝑟 𝑒𝑣𝑒𝑟𝑦 𝑛 ∈ 𝑁 

But fn (x) = n  

 lim
𝑛→∞

𝑓𝑛(𝑥) =  ∞ = 𝑓(𝑥). 
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When we do not assume non-negativeness of the function then since we know that f


 and f


 

are both non-negative, we have by what we have proved above 

lim '( )n
n

f x



                                                                                                          (i) 

lim ''( )n
n

f x



                                                                                                          (ii) 

where ∅𝑛
′(𝑥) and ∅𝑛

′′(𝑥) are simple functions. Also we have proved already that 

                                        f = f


 −𝑓−                                               

Now from (i) and (ii) we have 

f


 −𝑓−   =       lim '( )n
n

x


   − lim ''( )n
n

x


 

                  =        lim( '( ) ''( ))n n
n

x x 


  

                 =           lim ( )n
n

x


 

(since the difference of two simple functions is again a simple function). Hence the theorem. 

We now introduce the terminology “almost everywhere” which will be frequently used in the Sequel. 

2.27 Definition. A statement is said to hold almost everywhere in E if and only if it holds 

everywhere in E except possibly at a subset D of measure zero. 

(a) Two functions f and g defined on E are said to be equal almost everywhere in E iff  

f(x) =g(x) everywhere except a subset D of E of measure zero. 

(b) A function defined on E is said to be continuous almost everywhere in E if and only  

if   ther  

2.28 Theorem. (a) If f is a measurable function on the set E and 𝐸1 ⊆ 𝐸is measured set, then f is a 

measurable function on 𝐸1. 

(b) If f is a measurable function on each of the sets in a countable collection{Ei } of disjoint measurable 

sets, then f is measurable. 

Proof. (a) For any real 𝛼, we have {x ∈ 𝐸1, f(x) > 𝛼 } = { x ∈E; f(x) > 𝛼 } ∩E1. The result follows as 

the set on the right-hand side is measurable. 

(b)Write E = 
1

i

i

E




, Clearly, E, being the union of measurable set is measurable. The result now 

follows, since for each real 𝛼, we have  

E = { x ∈E: f(x) > 𝛼 } = { x ∈
1

i

i

E




: f(x) > 𝛼 } 
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2.29 Theorem. Let f and g be any two functions which are equal almost everywhere in E. If f is 

measurable so is g. 

Proof. Since f is measurable, for any real, the set {x | f(x) >  } is measurable. We shall show that the set 

{x | g(x) >  } is measurable. To do so we put  

E1 = {x | f(x) >  } and E2 = {x | g(x) > 𝛼 }. Consider the sets   

E1 – E2 and E2 – E1.  

These are subsets of {𝑥: 𝑓(𝑥) ≠ 𝑔(𝑥)} [
∵ 𝑥 ∈ 𝐸1 − 𝐸2 ⟹ 𝑥 ∈ 𝐸1𝑎𝑛𝑑 𝑥 ∉ 𝐸2
𝑓(𝑥) > 𝛼, 𝑔(𝑥) ≯ 𝛼 ⟹ 𝑓(𝑥) ≠ 𝑔(𝑥)

] 

But f = g a.e.  

 m{𝑥: 𝑓(𝑥) ≠ 𝑔(𝑥)} = 0 

𝐸1 − 𝐸2 ⊆ {𝑥: 𝑓(𝑥) ≠ 𝑔(𝑥)} 

m(𝐸1 − 𝐸2) ≤ m{𝑥: 𝑓(𝑥) ≠ 𝑔(𝑥)} = 0 

 m(𝐸1 − 𝐸2) ≤ 0 But m(𝐸1 − 𝐸2) ≥ 0 

 m(𝐸1 − 𝐸2) = 0 

Similarly m(𝐸2 − 𝐸1) =0 

∴ m(𝐸2 − 𝐸1) = 0 = m(𝐸1 − 𝐸2) 

 (𝐸1 − 𝐸2) and (𝐸2 − 𝐸1) are measurable. 

 E2 = [E1 ∪( E2 – E1)] - ( E1 – E2)  

Since E1,  E2 – E1 and  ( E1 – E2)
C are measurable therefore it follows that E2 is measurable. Hence the 

theorem is proved. 

2.30. Corollary. Let {fn} be a sequence of measurable functions such that lim n
n

f f


 almost 

everywhere. Then f is a measurable function. 

Proof. We have already proved that if {fn} is a sequence of measurable functions then lim n
n

f


 is 

measurable. Also, it is given that lim n
n

f


 = f a.e. Therefore, using the above theorem, it follows that f is 

measurable. 

2.31 Definition:  (Restriction of f to E1) 

Let f be a function defined on E, then the function f1 defined on E1 contained in E .i.e., E1 ⊆ E by f1(x) = 

f(x), x ∈ E1 is called restriction of f to E1 and denoted by f/ E1. 

2.32 Exercise : Let f be a measurable function defined on E, then its restriction to E1 is also 

measurable where  E1 is a measurable subset of E. 

Solution : Let f1 = f/ E1 i.e., f1 is restriction of f to E1. 

Let 𝛼 𝑏𝑒 𝑎𝑛𝑦 𝑟𝑒𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟. 

{x ∈ 𝐸1: f1(x) > 𝛼} = { x ∈E1: f(x) > 𝛼 } [∵  𝑓1 = 𝑓 𝑜𝑛 𝐸1] 
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            = { x ∈E: f(x) > 𝛼 } ∩ E1is measurable on E and E1 is also measurable and 

intersection of measurable sets is measurable. Hence f1 is measurable on E1. 

2.33Exercise:𝐋𝐞𝐭 𝐟 𝐛𝐞 𝐚 𝐦𝐞𝐚𝐬𝐮𝐫𝐚𝐛𝐥𝐞 𝐟𝐮𝐧𝐜𝐭𝐢𝐨𝐧 𝐝𝐞𝐟𝐢𝐧𝐞𝐝 𝐨𝐧 𝒘𝒉𝒆𝒓𝒆 𝑬𝟏 𝒂𝒏𝒅 𝑬𝟐 𝒂𝒓𝒆 𝒎𝒆𝒂𝒔𝒖𝒓𝒂𝒃𝒍𝒆. 

𝑻𝒉𝒆𝒏 𝒕𝒉𝒆 𝒇𝒖𝒏𝒄𝒕𝒊𝒐𝒏 𝒇 𝒊𝒔 𝒎𝒆𝒂𝒔𝒖𝒓𝒂𝒃𝒍𝒆 𝒐𝒏 𝑬𝟏𝑼𝑬𝟐 𝒊𝒇𝒇
𝒇

𝑬𝟏
𝒂𝒏𝒅

𝒇

𝑬𝟐
 𝒂𝒓𝒆 𝒎𝒆𝒂𝒔𝒖𝒓𝒂𝒃𝒍𝒆.    

Solution: Let f1 = f/ E1 and Let f2 = f/ E2  

Let E =  𝐸1𝑈𝐸2 

Clearly E is measurable because 𝐸1 𝑎𝑛𝑑 𝐸2 𝑎𝑟𝑒 𝑚𝑒𝑎𝑠𝑢𝑟𝑎𝑏𝑙𝑒. Suppose f is measurable on E then by 

previous exercise f1 is measurable on E1 and f2 is measurable on E2. 

Conversely, Let 𝛼 𝑏𝑒 𝑎𝑛𝑦 𝑟𝑒𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟. 

Therefore 

{x ∈E: f(x) > 𝛼 } = { x ∈  𝐸1𝑈𝐸2 : f(x) > 𝛼 } 

      = { x ∈E1: f(x) > 𝛼 }∪ { x ∈E2: f(x) > 𝛼 } 

                            = { x ∈E1: f1(x) > 𝛼 }∪ { x ∈E2: f2(x) > 𝛼 } 

because f1 is measurable on E1 and f2 is measurable on E2. 

 f is measurable on E =  𝐸1𝑈𝐸2. 

2.24  Theorem. If a function f is continuous almost everywhere in E, then f is measurable. 

Proof. Since  f  is  continuous almost everywhere in E, there exists a subset D of E with m*D = 0 

such that f is continuous at every  point  of  the  set  C = E-D.  

To prove that f is measurable, let 𝛼 denote any given real number.  

Consider the set {x ∈E | f(x) >  } = B(say) 

We have to show that B is measurable. If B ∩C = 𝜑, 𝑡ℎ𝑒𝑛 𝐵 ⊆ 𝐷. 

 m*(B) ≤ m*(D) = 0. 

   m*(B) = 0. 

 B is measurable. 

Now suppose that B ∩C ≠ 𝜑. For this purpose, let x denote an arbitrary point in B ∩C. Then x ∈

𝐵 𝑎𝑛𝑑 𝑥 ∈ 𝐶 ⟹f(x) > 𝛼 and f is continuous at x. Hence there exists an open interval Ux 

containing    x such that f(y) > 𝛼 hold  for  every  point   y of E∩ Ux. Let   U   =⋃ 𝑈𝑥𝑥∈𝐵∩𝐶 .  

Since x ∈E ∩Ux ⊂B holds for every x ∈B ∩C,  we    have    

B ∩C⊂E ∩Ux ⊂B.   This   implies     B = (E ∩U) ∪(B ∩D). As an open subset of R, U is 

measurable. Hence E ∩U is measurable. On the other hand, since m*(B∩D) ≤m*D = 0 ,B∩D is 

also measurable. This implies that B is measurable. This completes the proof of the theorem. 

2.25 Littlewood’s three principles of measurability 

The following three principles concerning measure are due to Littlewood. 

First Principle. Every measurable set is a finite union of intervals. 

Second Principle. Every measurable function is almost a continuous function. 
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Third Principle. If {fn} is a sequence of measurable function defined on a set E of finite measure and if 

fn (x) →f(x) on E, then fn (x) converges almost uniformly on E. 

First of all we consider third principle. We shall prove Egoroff’s theorem which is a slight modification 

of third principle of Littlewood’s. 

2.26 Theorem. Let E be a measurable set with finite measure and {fn} be a sequence of measurable 

functions defined on a set E such that  

fn (x) →f(x) for each x ∈ 𝑬. 

Then given 𝜺 > 0  and 𝜹 > 0, there corresponds a measurable subset A  of E  with m(A) < 𝜹  and an 

integer N such that |𝒇𝒏(𝒙) − 𝒇(𝒙)| <  휀 ∀ 𝑥 ∈ 𝐸 − 𝐴 𝑎𝑛𝑑 𝑛 ≥ 𝑁. 

Proof: Consider the sets 𝐺𝑛 = {𝑥 ∈ 𝐸: |𝑓𝑛(𝑥) − 𝑓(𝑥)| ≥ 휀} 

Now since fn and f are measurable. 

So the sets 𝐺𝑛′𝑠 are also measurable. 

Now define 𝐸𝑘 = ⋃ 𝐺𝑛.
∞
𝑛=𝑘  

   = {𝑥: 𝑥 ∈ 𝐺𝑛 𝑓𝑜𝑟 𝑠𝑜𝑚𝑒 𝑛 ≥ 𝑘} 

                         = {𝑥: 𝑥 ∈ 𝐸, |𝑓𝑛(𝑥) − 𝑓(𝑥)| ≥ 휀 𝑓𝑜𝑟 𝑠𝑜𝑚𝑒 𝑛 ≥ 𝑘} 

We observe that 𝐸𝑘+1 ⊆ 𝐸𝑘. 

On the contrary, we assume that for each 𝑥 ∈ 𝐸𝑘∀ 𝑘. 

Then for any fixed given k, we must have 

𝐸𝑘 = {|𝑓𝑛(𝑥) − 𝑓(𝑥)| ≥ 휀 𝑓𝑜𝑟 𝑠𝑜𝑚𝑒 𝑛 ≥ 𝑘} 

But this leads to 𝑓𝑛(𝑥) ↛f(x). a contradiction. 

Hence for each x∈ 𝐸 there is some 𝐸𝑘 such that 𝑥 ∉ 𝐸𝑘 ⟹⋂ 𝐸𝑘 = ∅∞
𝑘=1  

Now measure of E is finite, so by proposition of decreasing sequence, we have 

lim
𝑛→∞

𝑚(𝐸𝑛) = 𝑚(⋂𝐸𝑛

∞

𝑛=1

) = 𝑚(∅) = 0 

lim
𝑛→∞

𝑚(𝐸𝑛) = 0. 

Hence given 𝛿 > 0, ∃ an integer N such that m(𝐸𝑘)  <  𝛿∀ 𝑘 ≥ 𝑁. 

In particular put k = N 

𝑚(𝐸𝑛) <  𝛿 

𝑚{𝑥: 𝑥 ∈ 𝐸, |𝑓𝑛(𝑥) − 𝑓(𝑥)| ≥ 휀𝑓𝑜𝑟 𝑠𝑜𝑚𝑒 𝑛 ≥ 𝑁} < 𝛿  

If we write A = 𝐸𝑛, then m(A) < 𝛿 𝑎𝑛𝑑  

E-A = {𝑥: 𝑥 ∈ 𝐸, |𝑓𝑛(𝑥) − 𝑓(𝑥)| < 휀𝑓𝑜𝑟 𝑎𝑙𝑙 𝑛 ≥ 𝑁} 
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In other words, 

|𝑓𝑛(𝑥) − 𝑓(𝑥)| < 휀𝑓𝑜𝑟 𝑎𝑙𝑙 𝑛 ≥ 𝑁 𝑎𝑛𝑑 𝑥 ∈ 𝐸 − 𝐴 

This completes the proof. 

2.27 Definition: A Sequence {fn} of functions defined on a set E is said to converge almost everywhere 

to f if lim ( ) ( )n
n

f x f x


  ∀ 𝑥 ∈ 𝐸 − 𝐸1 𝑤ℎ𝑒𝑟𝑒 𝐸1 ⊂ 𝐸, 

 𝑚(𝐸1) = 0. 

2.28 Theorem. Let E be a measurable set with finite measure and {fn} be a sequence of measurable 

functions converging almost everywhere to a real valued function f defined on a set E. Then given 

𝜺 > 0  and 𝜹 > 0, there corresponds a measurable subset A  of E  with m(A) < 𝜹  and an integer N 

such that |𝒇𝒏(𝒙) − 𝒇(𝒙)| <  휀 ∀ 𝑥 ∈ 𝐸 − 𝐴 𝑎𝑛𝑑 𝑛 ≥ 𝑁. 

Proof: Let F be a set of points of E for which 𝑓𝑛(𝑥) ↛f. Then m(F) = 0. 

Since fn (x) →f(x) almost everywhere, then  

fn (x) →f(x) ∀ 𝑥 ∈ 𝐸 − 𝐹 = 𝐸1(𝑠𝑎𝑦) 

Now applying the last theorem for the set 𝐸1, we get a set A1 ⊆ E1  with m(A1) < 𝛿  and an integer N 

such that |𝑓𝑛(𝑥) − 𝑓(𝑥)| <  휀 ∀ 𝑥 ∈ 𝐸1 − 𝐴1 𝑎𝑛𝑑 𝑛 ≥ 𝑁. 

Now the required result follows if we take 

𝐴 = 𝐴1 ∪ 𝐹 𝑎𝑠 𝑠ℎ𝑜𝑤𝑛 𝑏𝑒𝑙𝑜𝑤. 

𝑚(𝐴) = 𝑚(𝐴1 ∪ 𝐹) = 𝑚(𝐴1) + 𝑚(𝐹) = 𝑚(𝐴1) + 0 = 𝑚(𝐴1) < 𝛿 

Also 𝐸 − 𝐴 = 𝐸 − (𝐴1 ∪ 𝐹) = 𝐸 ∩ (𝐴1 ∪ 𝐹)
𝑐 

         = 𝐸 ∩ 𝐴1
𝑐 ∩ 𝐹𝑐 = (𝐸 ∩ 𝐹𝑐) ∩ 𝐴1

𝑐
 

         = (𝐸 − 𝐹) ∩ 𝐴1
𝑐 = 𝐸1 ∩ 𝐴1

𝑐 = 𝐸1 − 𝐴1 

i.e., E-A = 𝐸1 − 𝐴1 

Hence we have found a set A ⊆ E with m(A) < 𝛿  and an integer N such that |𝑓𝑛(𝑥) − 𝑓(𝑥)| <  휀 ∀ 𝑥 ∈
𝐸 − 𝐴 𝑎𝑛𝑑 𝑛 ≥ 𝑁. 

2.29 Definition: A Sequence {fn} of functions is said to converge almost uniformly everywhere to a 

measurable function f defined on a measurable set E if for each 휀 >0, ∃ 𝑎 𝑚𝑒𝑎𝑠𝑢𝑟𝑎𝑏𝑙𝑒 𝑠𝑒𝑡 A ⊆ E with 

m(A) <  휀  such that and an integer N such that 𝑓𝑛 𝑐𝑜𝑛𝑣𝑒𝑟𝑔𝑒𝑠 𝑡𝑜 𝑓 𝑢𝑛𝑖𝑓𝑜𝑟𝑚𝑙𝑦 𝑜𝑛 𝐸 − 𝐴. 

2.30 Theorem.(Egoroff’s Theorem). Let {fn} be a sequence of measurable functions defined on a set E 

of finite measure such that fn (x) →f(x) almost everywhere. Then to each 𝜂> 0 there corresponds a 

measurable subset A  of E such that  m (A) < 𝜂 such that fn(x) converges to f(x) uniformly on E-A. 

Proof.  Applying last theorem with 휀 = 1, 𝛿 =
𝜂
2⁄  

We get a measurable subset A1⊆ E with  m (A1) < 
𝜂
2⁄   and positive integer N1 such that 

|𝑓𝑛(𝑥) − 𝑓(𝑥)| < 1 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑛 ≥ 𝑁1 𝑎𝑛𝑑 𝑥 ∈ 𝐸1(= 𝐸 − 𝐴1) 

Again taking 휀 =
1

2
, 𝛿 =

𝜂
22⁄  
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We get another measurable subset A2⊆ E1 with  m (A2) < 
𝜂
22⁄   and positive integer N2 such that 

|𝑓𝑛(𝑥) − 𝑓(𝑥)| <
1

2
 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑛 ≥ 𝑁2 𝑎𝑛𝑑 𝑥 ∈ 𝐸2(= 𝐸1 − 𝐴2) 

Continuing like that at kth stage, we get a measurable subset Ak⊆ Ek-1 with   

m (Ak) < 
𝜂
2𝑘⁄   and positive integer Nk such that 

|𝑓𝑛(𝑥) − 𝑓(𝑥)| <
1

𝑘
 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑛 ≥ 𝑁𝑘 𝑎𝑛𝑑 𝑥 ∈ 𝐸𝑘(= 𝐸𝑘−1 − 𝐴𝑘) 

Now we set A = ⋃ 𝐴𝑘
∞
𝑘=1  

Then we have 

m(A) ≤ ∑ 𝑚(𝐴𝑘) < ∑ 𝜂
2𝑘⁄ = 𝜂.∑

1

2𝑘
= 𝜂.∞

𝑘=1
∞
𝑘=1

∞
𝑘=1   

Also E-A = E- ⋃ 𝐴𝑘 = ⋂ [𝐸𝑘−1 − 𝐴𝑘] = ⋂ 𝐸𝑘[∵ 𝐸𝑘−1 − 𝐴𝑘 = 𝐸𝑘]𝑘𝑘𝑘  

Let 𝑥 ∈ 𝐸 − 𝐴, 𝑡ℎ𝑒𝑛 𝑥 ∈ 𝐸𝑘∀ 𝑘 𝑎𝑛𝑑 𝑠𝑜 |𝑓𝑛(𝑥) − 𝑓(𝑥)| <
1

𝑘
∀𝑛 ≥ 𝑁𝑘. 

Choose k such that 
1

𝑘
< 휀 𝑠𝑜 𝑡ℎ𝑎𝑡 𝑤𝑒 𝑔𝑒𝑡 

|𝑓𝑛(𝑥) − 𝑓(𝑥)| < 휀 ∀ 𝑥 ∈ 𝐸 − 𝐴 𝑎𝑛𝑑 𝑛 ≥ 𝑁𝑘 = 𝑁.  

This completes the proof of the theorem. 

Now we pass to the second principle of Littlewood. This is nothing but approximation of measurable 

functions by continuous functions. In this connection we shall prove the following theorem known as 

Lusin Theorem after the name of a Russian Mathematician Lusin, N.N. 

2.31 Lusin Theorem: Let f be a measurable real valued function defined on closed interval [a,b], 

then given 𝜹 > 0, ∃ 𝑎 𝑐𝑜𝑛𝑡𝑖𝑛𝑢𝑜𝑢𝑠 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑔 𝑜𝑛 [𝒂, 𝒃]𝒔𝒖𝒄𝒉 𝒕𝒉𝒂𝒕 

𝒎{𝒙: 𝒇(𝒙) ≠ 𝒈(𝒙)} < 𝛿. 

Proof: First we prove two lemmas. 

Lemma 1. Let F be a closed subset of R, then a function g: F→ 𝑹 is continuous if sets {𝒙:𝒈(𝒙) ≤

𝒂} 𝒂𝒏𝒅 {𝒙:𝒈(𝒙) ≥ 𝒃} are closed subsets of F for every rational a and b. 

Proof: Let {𝑥: 𝑔(𝑥) ≤ 𝑎} 𝑎𝑛𝑑 {𝑥: 𝑔(𝑥) ≥ 𝑏} 𝑎𝑟𝑒 𝑐𝑙𝑜𝑠𝑒𝑑 𝑠𝑢𝑏𝑠𝑒𝑡 𝑜𝑓 𝐹. 

⇒ {𝑥: 𝑔(𝑥) > 𝑎} ∩ {𝑥: 𝑔(𝑥) < 𝑏} is open subset of F. 

.i.e., {𝑥: 𝑎 < 𝑔(𝑥) < 𝑏} is open. 

i.e., {𝑥: 𝑔(𝑥) ∈ (𝑎, 𝑏)} 𝑖𝑠 𝑜𝑝𝑒𝑛 𝑖𝑛 𝐹. 

i.e., 𝑔−1(𝑎, 𝑏)𝑖𝑠 𝑜𝑝𝑒𝑛 𝑖𝑛 𝐹. 

Let O be any open set in R then O can be written as countable union of disjoint open intervals with 

rational end points. 
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Let O = ⋃ (𝑎𝑛, 𝑏𝑛)
∞
𝑛=1  

Then 𝑔−1O = 𝑔−1(⋃ (𝑎𝑛, 𝑏𝑛))
∞
𝑛=1  = ⋃ 𝑔−1(𝑎𝑛, 𝑏𝑛)

∞
𝑛=1  

Since 𝑔−1(𝑎, 𝑏)𝑖𝑠 𝑜𝑝𝑒𝑛 and countable union of open set is open. 

⇒ 𝑔−1(𝑂) 𝑖𝑠 𝑜𝑝𝑒𝑛 ⇒ 𝑔 𝑖𝑠 𝑐𝑜𝑛𝑡𝑖𝑛𝑢𝑜𝑢𝑠. 

Lemma 2. Let f: [a, b] → 𝑹 be a measurable function, then given 

 𝜹 > 0, ∃ 𝑎 𝑐𝑙𝑜𝑠𝑒𝑑 𝑠𝑢𝑏𝑠𝑒𝑡 𝐹 𝑜𝑓 𝐸 = [𝒂, 𝒃]𝒔𝒖𝒄𝒉 𝒕𝒉𝒂𝒕 𝒎(𝑬 − 𝑭) <  𝛿 𝑎𝑛𝑑
𝒇

𝑭
𝒊𝒔 𝒄𝒐𝒏𝒕𝒊𝒏𝒖𝒐𝒖𝒔. 

Proof: Let {𝑟𝑛} 𝑏𝑒 𝑎 𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒 𝑜𝑓 𝑎𝑙𝑙 𝑟𝑎𝑡𝑖𝑜𝑛𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟𝑠. 

For n∈ 𝑁, take 𝐴𝑛 = {𝑥: 𝑓(𝑥) ≥ 𝑟𝑛} 

And 𝐴𝑛
∗ = {𝑥: 𝑓(𝑥) ≤ 𝑟𝑛} 

Clearly each 𝐴𝑛 𝑎𝑛𝑑𝐴𝑛
∗ 𝑎𝑟𝑒 𝑚𝑒𝑎𝑠𝑢𝑟𝑎𝑏𝑙𝑒 [∵ 𝑓 𝑖𝑠 𝑚𝑒𝑎𝑠𝑢𝑟𝑎𝑏𝑙𝑒] 

Then ∃ closed sets 𝐵𝑛 ⊂ 𝐴𝑛 𝑎𝑛𝑑 𝐵𝑛
∗ ⊂ 𝐴𝑛

∗ 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 

𝑚(𝐴𝑛 − 𝐵𝑛) <
𝛿

2𝑛. 3
 𝑎𝑛𝑑 𝑚(𝐴𝑛

∗ − 𝐵𝑛
∗) <

𝛿

2𝑛. 3
 

Let 𝐷 = [⋃ (𝐴𝑛 − 𝐵𝑛)
∞
𝑛=1 ] ∪ [⋃ (𝐴𝑛

∗ − 𝐵𝑛
∗)∞

𝑛=1 ] 

Clearly D is measurable. 

Therefore m(D) ≤ ∑ 𝑚(𝐴𝑛 − 𝐵𝑛) + ∑ 𝑚(𝐴𝑛
∗ − 𝐵𝑛

∗)∞
𝑛=1

∞
𝑛=1  

m(D) < ∑
𝛿

2𝑛.3
+ ∑

𝛿

2𝑛.3
∞
𝑛=1

∞
𝑛=1  

  =
𝛿

3
+
𝛿

3
=

2𝛿

3
 

⇒ 𝑚(𝐷) <
2𝛿

3
. 

Now E and D are measurable. 

 E-D is measurable. 

Then for given 𝛿 > 0, ∃ 𝑎 𝑐𝑙𝑜𝑠𝑒𝑑 𝑠𝑒𝑡 𝐹 ⊆ 𝐸 − 𝐷 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 𝑚(𝐸 − 𝐷 − 𝐹) <
𝛿

3
 

Now E-F = D∪ (𝐸 − 𝐹 − 𝐷) 

 m(E-F) = m(D) + m(𝐸 − 𝐹 − 𝐷) <
2𝛿

3
+
𝛿

3
=  𝛿 

Let h = f/F 

To show that h is continuous on F. 

For rational number 𝑟𝑛, 

{𝑥: ℎ(𝑥) ≤ 𝑟𝑛} = {𝑥: 𝑓(𝑥) ≤ 𝑟𝑛} ∩ 𝐹 

      = 𝐴𝑛
∗ ∩ 𝐹 = [((𝐴𝑛

∗ − 𝐵𝑛
∗) ∪ 𝐵𝑛

∗)] ∩ 𝐹 

     =[((𝐴𝑛
∗ − 𝐵𝑛

∗) ∩ 𝐹)] ∪ [𝐵𝑛
∗ ∩ 𝐹] 

     = ∅ ∪ [𝐵𝑛
∗ ∩ 𝐹] 

     = 𝐵𝑛
∗ ∩ 𝐹 
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𝐷 = [⋃(𝐴𝑛 − 𝐵𝑛)

∞

𝑛=1

] ∪ [⋃(𝐴𝑛
∗ − 𝐵𝑛

∗)

∞

𝑛=1

] 

⇒ (𝐴𝑛
∗ − 𝐵𝑛

∗) ⊂ 𝐷 

∵  𝐹 ⊆ 𝐸 − 𝐷 ⇒ 𝐹 ∩ 𝐷 = ∅. 

{𝑥: ℎ(𝑥) ≤ 𝑟𝑛} = 𝐵𝑛
∗ ∩ 𝐹 

Since 𝐵𝑛
∗ 𝑖𝑠 𝑐𝑙𝑜𝑠𝑒𝑑 𝑖𝑛 𝐸 = [𝑎, 𝑏]. 

𝐵𝑛
∗ ∩ 𝐹 𝑖𝑠 𝑐𝑙𝑜𝑠𝑒𝑑 𝑖𝑛 𝐹. 

 {𝑥: ℎ(𝑥) ≤ 𝑟𝑛} 𝑖𝑠 𝑐𝑙𝑜𝑠𝑒𝑑 𝑖𝑛 𝐹. 

By lemma 1, h is continuous. 

So f/F is continuous. 

Lusin Theorem:(Proof):- We have 

f:[a, b]→ 𝑅 is measurable function, then by lemma(2), for given 𝛿 > 0, ∃ 𝑎 𝑐𝑙𝑜𝑠𝑒𝑑 𝑠𝑒𝑡 𝐹 ⊂ 𝐸 

  𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 𝑚(𝐸 − 𝐹) < 𝛿 𝑎𝑛𝑑 ℎ =
𝑓

𝐹
𝑖𝑠 𝑐𝑜𝑛𝑡𝑖𝑛𝑢𝑜𝑢𝑠. 

Now using result “Every real valued continuous  function defined on a closed subset of a  real 

number can be extended continuously  to all real numbers.” 

So h can be extended to continuous function h*: R→ 𝑅. 

Let g :[a, b]→ 𝑅, 𝑔 𝑖𝑠 𝑐𝑜𝑛𝑡𝑖𝑛𝑢𝑜𝑢𝑠  

𝑎𝑛𝑑 𝑓𝑜𝑟 𝑥 ∈ 𝐹, 𝑔(𝑥) = 𝑓(𝑥)𝑜𝑛 𝐹. 

𝑎𝑛𝑑 {𝑥 ∈ 𝐸: 𝑓(𝑥) ≠ 𝑔(𝑥)} ⊆ 𝐸 − 𝐹 

𝑚{𝑥 ∈ 𝐸: 𝑓(𝑥) ≠ 𝑔(𝑥)} ≤ 𝑚(𝐸 − 𝐹) < 𝛿. 

“Convergence in Measure” 

The notion of convergence in measure is introduced by F.Reisz and E.Fisher in 1906-07. 

Sometimes it is also called approximate convergence. 

2.32 Definition.  A sequence < fn > of measurable functions is said to convergence in measure to f on a 

set E, written as 𝑓𝑛
𝑚
→𝑓 𝑜𝑛 𝐸,  

If given   𝛿> 0,  ∃ 𝑚 ∈   N such that for all n  ≥ 𝑚, we have 

 𝑚{𝑥||𝑓(𝑥) − 𝑓𝑛(𝑥)| ≥  휀} <  𝛿. 

Or lim
𝑛→∞

 𝑚{𝑥||𝑓(𝑥) − 𝑓𝑛(𝑥)| ≥  휀} = 0 

This means that for all sufficiently large value of n, functions 𝑓𝑛 of the sequence < fn > differ from the 

limit function f by a small quantity with the exception of the set of point whose measure is arbitrary 

small (<𝛿). 

2.33 Theorem: If sequence {𝒇𝒏} converges in measure to the function f, then it converges in 

measure to  every function g which is equivalent to the function. 

Proof:       For each 휀 > 0, we have 

{𝑥: |𝑓𝑛(𝑥) − 𝑔(𝑥)| ≥ 휀} ⊂ {𝑥: 𝑓(𝑥) ≠ 𝑔(𝑥)} ∪ {𝑥: |𝑓𝑛(𝑥) − 𝑓(𝑥)| ≥ 휀}  
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Since g is equivalent to f, then we have 

              𝑚{𝑥: 𝑓(𝑥) ≠ 𝑔(𝑥)} = 0.          

 𝑚{𝑥: |𝑓𝑛(𝑥) − 𝑔(𝑥)| ≥ 휀} ≤ 𝑚{𝑥: 𝑓(𝑥) ≠ 𝑔(𝑥)} + 𝑚{𝑥: |𝑓𝑛(𝑥) − 𝑓(𝑥)| ≥ 휀}                 

 ≤ 𝑚{𝑥: |𝑓𝑛(𝑥) − 𝑓(𝑥) ≥ 휀|} < 𝛿 

⇒ 𝒇𝒏
𝒎
→𝒈. 

Hence the result. 

2.34 Theorem: If sequence {𝒇𝒏} converges in measure to the function f, then the limit function f is 

unique a.e. 

Proof: Let g be another function such that 𝒇𝒏
𝒎
→𝒈. 

Since |𝑓 − 𝑔| ≤ |𝑓 − 𝑓𝑛| + |𝑓𝑛 − 𝑔| 

Now we observe that for each 휀 > 0, 

{𝑥: |𝑓(𝑥) − 𝑔(𝑥)| ≥ 휀} ⊂ {𝑥: |𝑓𝑛(𝑥) − 𝑓(𝑥)| ≥
휀

2
} ∪ {𝑥: |𝑓𝑛(𝑥) − 𝑔(𝑥)| ≥

휀

2
} 

Since by proper choice of 휀, the measure of both the sets on the right can be made arbitrary small, we 

have 

𝑚{𝑥: |𝑓(𝑥) − 𝑔(𝑥)| ≥ 휀}=0 

 f = g almost everywhere. Hence the proof. 

2.35 Theorem: Let  {𝒇𝒏} be a sequence of measurable functions which converges to f a.e. on 

X. Then 𝒇𝒏
𝒎
→𝒇 𝒐𝒏 𝑿. 

Proof:  For each n∈ 𝑁 𝑎𝑛𝑑 휀 > 0, 𝐶𝑜𝑛𝑠𝑖𝑑𝑒𝑟 𝑡ℎ𝑒 𝑠𝑒𝑡𝑠 
𝑆𝑛(휀) = {𝑥 ∈ 𝑋: |𝑓𝑛(𝑥) − 𝑓(𝑥)| ≥ 휀} 

Let 𝛿 > 0 𝑏𝑒 𝑎𝑛𝑦 𝑎𝑟𝑏𝑖𝑡𝑟𝑎𝑟𝑦 𝑛𝑢𝑚𝑏𝑒𝑟, 𝑡ℎ𝑒𝑛 ∃𝑎 𝑚𝑒𝑎𝑠𝑢𝑟𝑎𝑏𝑙𝑒 𝑠𝑒𝑡 𝐴 ⊂ 𝑋 

With m(A) < 𝛿 and the number N such that 

|𝑓𝑛(𝑥) − 𝑓(𝑥)| < 휀 ∀𝑥 ∈ 𝑋 − 𝐴 𝑎𝑛𝑑 𝑛 ≥ 𝑁 

Then it follows that 𝑆𝑛(휀) ⊂ 𝐴 ∀ 𝑛 ≥ 𝑁 

 𝑚(𝑆𝑛(휀)) < 𝑚(𝐴) <  𝛿∀ 𝑛 ≥ 𝑁 

 lim
𝑛→∞

 𝑚(𝑆𝑛(휀)) = 0 

Hence𝒇𝒏
𝒎
→𝒇 𝒐𝒏 𝑿. 

2.36 Remark: The converse of the above theorem need not be true i.e, convergence in measure is 

more general than a.e. infact there are sequence of measurable functions that converges in 

measure but fails to converge at any point. 

To affect we consider the following example 

𝒇𝒏: [𝟎, 𝟏] → 𝑹 𝒂𝒔 

𝒇𝒏(𝒙) =  {
𝟏, 𝒊𝒇 𝒙 ∈ [

𝒌

𝟐𝒕
,
𝒌 + 𝟏

𝟐𝒕
]

𝟎, 𝒐𝒕𝒉𝒆𝒓𝒘𝒊𝒔𝒆
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Let n = 𝑘 + 2𝑡  𝑤ℎ𝑒𝑟𝑒 0 ≤ 𝑘 ≤ 2𝑡 . 

Let 휀 > 0 𝑏𝑒 𝑔𝑖𝑣𝑒𝑛. Choose an m ∈ 𝑁 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 
2

𝑚
< 휀 

Then 𝑚{𝑥: |𝑓𝑛(𝑥) − 0| ≥ 휀} = 𝑚{𝑥: |𝑓𝑛| ≥ 휀} 

              =
1

2𝑡
<

1

2𝑛
  [
∵ 𝑛 = 𝑘 + 2𝑡 < 2𝑡 + 2𝑡

< 2. 2𝑡  ,   
1

2𝑡
<

2

𝑛

]   (*) 

                                              ≤
2

𝑚
< 휀  ∀ 𝑛 ≥ 𝑚 

 𝑓𝑛 converges in measure to zero for x∈ [0, 1] 

 𝑖. 𝑒. , 𝑓𝑛
𝑚
→ [0, 1] 

fn (x) has value 1 for arbitrary large value of n and so it does not converge to zero a.e. because 

on taking n very large, we get 2t large and hence number of subintervals of type (*) increase and 

possibility of 𝑓𝑛(𝑥) = 1 𝑖𝑠 𝑚𝑜𝑟𝑒. 

2.37 Theorem (F. Riesz). “Let < fn > be a sequence of measurable functions which converges in 

measure to f. Then there is a subsequence < 𝑓𝑛𝑘 > of  < fn > which  converges  to  f almost 

everywhere.”    

Proof.  Let 𝒇𝒏
𝒎
→𝒇 .  

Let us consider two sequences {
1

𝑛
}  𝑎𝑛𝑑 {

1

2𝑛
}  𝑜𝑓 𝑟𝑒𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟𝑠 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 

 
1

𝑛
→ 0  𝑎𝑠 𝑛 → ∞ 𝑎𝑠 ∑

1

2𝑛
= 1 < ∞.

∞

𝑛=1

 

We now choose a strictly increasing sequence {𝑛𝑘} of positive integer as follows 

Let 𝑛1 be a positive integer such that 

𝑚({𝑥: |𝑓𝑛1(𝑥) − 𝑓(𝑥)| ≥ 1}) <
1

2
 

Such a number 𝑛1  exists since in view 𝒇𝒏
𝒎
→𝒇  for a given 휀1 = 1 > 0 𝑎𝑛𝑑 

 𝛿1 =
1

2
> 0, ∃ 𝑎𝑛 𝑖𝑛𝑡𝑒𝑔𝑒𝑟 𝑛1𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡  

𝑚({𝑥: |𝑓𝑛(𝑥) − 𝑓(𝑥)| ≥ 1}) <
1

2
∀𝑛 ≥ 𝑛1 

In particular for n = 𝑛1. 

Similarly, Let 𝑛2 be a positive number such that 𝑛2 ≥ 𝑛1 𝑎𝑛𝑑 

𝑚({𝑥: |𝑓𝑛2(𝑥) − 𝑓(𝑥)| ≥
1

2
}) <

1

22
 𝑎𝑛𝑑 𝑠𝑜 𝑜𝑛. 

Continuing in this process, we get the positive number𝑛𝑘 ≥ 𝑛𝑘−1 

𝑚({𝑥: |𝑓𝑛𝑘(𝑥) − 𝑓(𝑥)| ≥
1

𝑘
}) <

1

2𝑘
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Now set Ek = ⋃ {𝑥: |𝑓𝑛𝑖(𝑥) − 𝑓(𝑥)| ≥
1

𝑖
} , 𝑘 ∈ 𝑁∞

𝑖=𝑘 . 

And 𝐸 =  ⋂ 𝐸𝑘
∞
𝑘=1  

Then it is clear that {𝐸𝑘} is decreasing sequence of measurable sets. 

Therefore 𝑚(𝐸) = lim
𝑘→∞

𝑚(𝐸𝑘) 

But 𝑚(𝐸𝑘) = 𝑚 {⋃ {𝑥: |𝑓𝑛𝑖(𝑥) − 𝑓(𝑥)| ≥
1

𝑖
}∞

𝑖=𝑘 } 

         ≤ ∑ 𝑚 {𝑥: |𝑓𝑛𝑖(𝑥) − 𝑓(𝑥)| ≥
1

𝑖
}∞

𝑖=𝑘  

                     < ∑
1

2𝑖
∞
𝑖=𝑘 → 0 𝑎𝑠 𝑘 → ∞     

                    = 
1

2𝑘−1
 

Hence m(E) = 0. 

Thus it remains to be verified that the sequence < 𝑓𝑛𝑘 > converges to f on X-E. 

So let 𝑥0 ∉ 𝐸. Then 𝑥0 ∉ 𝐸𝑚 for some positive integer m. 

i.e., 𝑥0 ∉ {𝑥: |𝑓𝑛𝑘(𝑥) − 𝑓(𝑥)| ≥
1

𝑘
} , 𝑘 ≥ 𝑚 

⇒ |𝑓𝑛𝑘(𝑥) − 𝑓(𝑥)| <
1

𝑘
, 𝑘 ≥ 𝑚 

But 
1

𝑘
→ 0 as k→ ∞ 

Hence lim
𝑘→∞

𝑓𝑛𝑘(𝑥0) = 𝑓(𝑥0). 

Since 𝑥0 ∈ 𝑋 − 𝐸 was arbitrary, it follows that 

lim
𝑘→∞

𝑓𝑛𝑘(𝑥) = 𝑓(𝑥) for each x ∈ 𝑋 − 𝐸 and so {𝑓𝑛𝑘} 𝑐𝑜𝑛𝑣𝑒𝑟𝑔𝑒𝑠 𝑡𝑜 𝑓 𝑎. 𝑒. 

This completes the proof. 



 

SS EE CC TT II OO NN   ––   IIIIII   

THE LEBESGUE INTEGRAL 

Lebesgue integration is an alternative way of defining the integral in terms of measure theory that is 

used to inte grate a much broader class of functions than the Riemann integral or even the Riemann-

Stieltjes integral. The idea behind the Lebesgue integral is that instead of approximating the total area by 

dividing it into vertical strips, one approximates the total area by dividing it into horizontal strips.  

3.1 The shortcomings of the Riemann integral suggested the further investigations in the theory of 

integration. We give a resume of the Riemann Integral first. 

Let f be a bounded real- valued function on the interval [a, b] and let  

 a =  ξ
0 
< ξ

1 
< ⋯ < ξ

n 
= b      

Be a partition of  [a, b]. Then for each partition we define the sums  

S = ∑ (ξ
i

n
i=1 − ξ

i−1 
)Mi    

and s = ∑ (ξ
i

n
i=1 − ξ

i−1 
)mi  

where  

Mi = Sup
ξi−1 <x<ξi 

f(x) , mi = inf
ξi−1 <x<ξi 

f(x) 

We then define the upper Riemann integral of f by  

R∫ f(x)dx
b

a
 = inf S 

With the infimum taken over all possible subdivisions of  [a, b]. 

Similarly, we define the lower integral  

R∫ f(x)dx
b

a
 = sup s. 

The upper integral is always at least as large as the lower integral, and if the two are equal we say that f 

is Riemann integrable and call this common value the Riemann integral of f. We shall denote it by 

R∫ f(x)
b

a
  

To distinguish it from the Lebesgue integral, which we shall consider later. 

By a step function we mean a function ψ which has the form  

ψ(x) = ci , ξi−1 < x < ξ
i 
 

for some subdivision of [a, b] and some set of constants ci . 

https://brilliant.org/wiki/measure-theory/
https://brilliant.org/wiki/riemann-integral/
https://brilliant.org/wiki/riemann-stieltjes-integral/
https://brilliant.org/wiki/riemann-stieltjes-integral/
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The integral of  ψ(x)  is defined by  

R∫ψ(x)

b

a

dx =  ∑ci

n

i=1

(ξ
i
− ξ

i−1
). 

With this in mind we see that  

 R∫ f(x)dx
b

a
 = inf ∫ ψ(x)

b

a
dx 

for all step function ψ(x) ≥ f(x). 

Similarly,  

R∫ f(x)dx
b

a
 = sup ∫ ϕ(x)

b

a
dx 

for all step functions ϕ(x) ≤ f(x). 

3.2. Example: If  

f(x) = {
1 if x is rational
o if x irrational

  

then  R∫ f(x)dx
b

a
= b − a  and R∫ f(x)dx

b

a
= 0. 

Thus we see that f(x) is not integrable in the Riemann sense. 

3.3. The Lebesgue Integral of a bounded function over a set of finite measure 

The example we have cited just now shows some of shortcomings of the Riemann integral. In particular, 

we would like a function which is 1 in measurable set and zero elsewhere to be integrable and have its 

integral the measure of the set. 

The function χ
E
 defined by 

χ
E
= {

1 ϵ  E
o x ∉ E

 

is called the characteristic function on E. A linear combination  

                                             ϕ(x) =  ∑ ai
n
i=1 χ

E
(x) 

is called a simple function if the sets Ei  are measurable. This representation for ϕ is not unique. 

However,  we note that a function ϕ is simple if and only if it is measurable and assume only a finite 

number of values. If ϕ is simple function and [a1 , a2 ,…, an ] the set of non- zero values of ϕ , then  

ϕ = ∑aiχAi 
 ,  

where Ai = { {x| ϕ(x) = ai}  . This representation for 𝛟 is called the canonical representation and 

it is characterized by the fact that the Ai  are disjoint and the ai  distinct and non- zero. 

If ϕ vanishes outside a set of finite measure, we define the integral ϕ by  

∫ϕ(x)dx =  ∑aimAi

n

i=1
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when ϕ has the canonical representation ϕ = ∑ aiχAi 
n
i=1  . we sometimes abbreviate the expression for 

this integral to ∫ϕ. If E is any measurable set, we define ∫∅
𝐸

 =∫ϕ. χE 

It is often convenient to use representations which are not canonical, and the following lemma is useful. 

3.4. Lemma.   If E1, E2,…,En are disjoint measurable subset of  E then every linear combination  

ϕ =  ∑ ciχEi
n
i=1   

With real coefficients c1, c2,…, cn is a simple function and  

∫ϕ = ∑ cimEi
n
i=1  . 

Proof. It is clear that ϕ is a simple function. Let a1, a2,…, an denote the non- zero real number in ϕ(E). 

For each j = 1, 2, …, n . Let  

Aj = ⋃ Ei
ci=aj

 

Then we have  Aj = ϕ
−1(aj) = {x|ϕ(x) = aj}     

and the canonical representation  

ϕ =∑ajχAj 

n

j=1

 

Consequently, we obtain 

 ∫ϕ = ∑ ajmAj
n
j=1   

                               = ∑ ajm
n
j=1      [⋃ Ei]ci=aj

 

                              = ∑ aj  ∑ mEi
n
ci=aj

n
j=1    ( Since Ei are disjoint, additivity of measures applies ) 

∑cjmEi

n

j=1

 

This completes the proof of the theorem.  

 3.5. Theorem. Let ϕ and ψ be simple functions which vanish outside a set of finite measure. Then  

∫(aϕ + bψ) = a∫ϕ + b∫ψ  and, if ϕ ≥  ψ a.e., then ∫ϕ  ≥  ∫ψ  

Proof.  Let {Ai} and {Bi} be the sets which occur in the canonical representations of  ϕ and ψ. Let A0 

and B0 be the sets where ϕ and ψ are zero. Then the sets Ek  obtained  by taking all the intersection  Ai ∩

Bj form a finite disjoint collection of measurable sets, and we write  

ϕ =  ∑akχ
Ek

N

k=1
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        ψ = ∑bkχ
Ek

N

k=1

 

and so  

aϕ + bψ = a ∑akχ
Ek
+ b∑bkχ

Ek

N

k=1

N

k=1

 

                      = ∑aakχ
Ek

N

k=1

+ ∑bkχ
Ek

N

k=1

 

            = ∑(aak + bbk)χEk

N

k=1

 

Therefore  

aϕ + bψ = ∑(aak + bbk)mEk

N

k=1

 

                             = a ∑akmEk + b∑bkmEk

N

k=1

N

k=1

 

 = a∫ϕ + b∫ψ . 

To prove the second statement, we note that 

∫ϕ−∫ψ = ∫ϕ − ψ  ≥ 0 , 

Since the integral of a simple function which is greater than or equal to zero almost everywhere is 

non- negative by the definition of the integral. 

3.6. Remark.  We know that for any simple function ϕ we have  

 ϕ =  ∑aiχEi

N

k=1

 

Suppose that this representation is neither canonical nor the sets Ei’s are disjoint. Then using the fact 

that characteristics functions are always simple function we observe that  

∫ϕ = ∫a1χ
E1
+∫a2χ

E2
+…+∫anχ

En
 

= a1∫ χE1
+ a2∫ χE2

 +⋯+ an∫ χEn
 

= a1mE1 + a2mE2 +⋯+ anmEn 
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=∑aimEi

N

k=1

 

Hence for any representation of  ϕ, we have  

∫ϕ =∑aimEi

N

k=1

 

Let f be a bounded real valued function and E be a measurable set of finite measure. By analogy with the 

Riemann integral we consider for simple functions ϕ and ψ the numbers  

inf
ψ≥f
∫ψ

 

E

 

and  

sup
ϕ≤f

 

∫ϕ

 

E

 

and ask when these two numbers are equal. The answer is given by the following proposition . 

3.7. Theorem.  Let f be defined and bounded on a measurable set E with mE finite. In order that  

inf
f≤ψ
∫ψ

 

E

(x)dx = sup
f≥ψ

∫ψ(x)dx

 

E

   

For all simple functions ϕ and ψ, it is necessary and sufficient that f be measurable. 

Proof.  Let f be bounded by M and suppose that f is measurable. Then the sets  

                                     Ek = {x|
KM

n
≥ f(x) >

(K−1)M

n
} , −n ≤ K ≤ n , 

Are measurable, disjoint and have union E. Thus  

∑ mEk = mE

n

k=−n

 

The simple function defined by  

ψ
n
(x) =

M

n
∑ kχ

Ek
(x)

n

k=−n

 

and   

ϕn(x) =
M

n
∑ (k−1)χ

Ek

n

k=−n

(x) 

satisfy  

ϕn(x) ≤ f(x) ≤ ψ
n
(x) 
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Thus            inf ∫ ψ(x)dx ≤  ∫ ψ
n
(x)dx =  

M

n
∑ kmEk
n
k=−n

 

E
 

 

E
 

and            sup ∫ ϕ(x)dx ≥  ∫ ϕn(x)dx =   
M

n
∑ (k − 1)mn
k=−n

 

E
Ek  

 

E
 

hence     0 ≤ inf ∫ ψ(x)dx − sup∫ ϕ(x)dx ≤
 

E

 

E

M

n
∑ mEk
n
k=−n =

M

n
mE . 

Since n is arbitrary we have  

inf∫ψ(x)dx − sup∫ϕ(x)dx = 0 ,

 

E

 

E

 

and the condition is sufficient.  

Suppose now that    inf
ψ≥f
∫ ψ(x)dx =  sup

ϕ≤f
∫ ϕ(x)dx .
 

E

 

E
 

Then given n there are simple functions ϕn and ψn such that  

ϕn(x) ≤ f(x) ≤ ψ
n
(x) 

And    (1)                  ∫ψ
n
(x)dx − ∫ϕn(x)dx <  

1

n
  

Then the functions                                                                ψ∗ = infψ
n
  

And                                                       ϕ∗ = supϕn 

Are measurable and                                                       ϕ∗(x) ≤ f(x) ≤  ψ∗(x) .  

Now the set  

Δ = {x|  ϕ∗(x) <  ψ∗(x)} 

is the union of the sets  

Δv = {x|  ϕ
∗(x) <  ψ∗(x) −

1
v}. 

But each  Δv is contained in the set {x|ϕn(x) < ψ
n
(x) −

1

v
} , and this latter set by (1) has measure less 

than  
v

n
 . Since n is arbitrary, mΔv = 0 and so mΔ = 0. Thus   ϕ∗ =   ψ∗ except on a set of measure zero, 

and   ϕ∗ = f except on a set of measure zero. Thus f is measurable and the condition is also necessary. 

 3.8. Definition.  If f is a bounded measurable function defined on a measurable set E with mE finite, we 

define the Lebesgue integral of f over E by  

∫ f(x)dx = inf∫ψ(x)

 

E

 

E

 

for all simple functions  ψ ≥ f . 

By previous theorem, this may also be defined as  
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∫ f(x)dx = sup∫ϕ(x)

 

E

 

E

 

for all simple functions ϕ ≤ f .  

We sometime write the integral as ∫ f
 

E
 . If E =[a,b] we write ∫ f

b

a
  instead of ∫ f

 

[a,b]
 . 

Definition and existence of the Lebesgue integral for bounded functions 

3.9. Definition.  Let F be a bounded function on E and let Ek be a subset of  E. Then we define M[f, Ek] 

and m[f, Ek] as  

M[f, Ek ] = l. u. b
xεEk

f(x) 

m[f, Ek] = g. l. b
xεEk

f(x) 

3.10. Definition.  By a measurable partition of E we mean a finite collection P = {E1, E2, …, En} of 

measurable subsets of E such that 

⋃Ek = E

n

k=1

 

And such that m(Ej ∩ Ek) = 0 (j, k = 1,2, … , n , j ≠ k) 

The sets E1 , E2 ,…,En are called the components of P. 

If P and Q are measurable partitions, then Q is called a refinement of P if every component of Q is 

wholly contained in some component of P. 

Thus a measurable partition P is a finite collection of subsets whose union is all of E and whose 

intersections with one another have measure zero. 

3.11. Definition. Let f be a bounded function on E and let P={ E1 , E2 ,…,En} be any measurable 

partition E. we define the upper sum U[f, P] as  

U[f;  P]  =  ∑M[f; Ek ].mEk

n

k=1

 

Similarly, we define the lower sum L[f; P] as 

L[f;  P]  =  ∑m[f; Ek ]. mEk

n

k=1

 

As in the case of Riemann integral, we can see that every upper sum for f is greater than or equal to 

every lower sum for f. 

We then define the Lebesgue upper and lower integral of a bounded function f on E by  

inf
P
U[f;  P] and sup

P
L[f;  P]   
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Respectively taken over all measurable position of E. We denote them respectively by  

∫ f  and ∫ f

 

E̅

−

E

 

3.12. Definition. We say that a bounded function f on E is Lebesgue integrable on E if  

∫ f  and ∫ f

 

E̅

−

E

 

Also we know that if  ψ is a simple function, then  

∫ψ

 

E

= ∑akmEk

n

k=1

 

Keeping this in mind, we see that  

∫ f = inf∫ ψ(x)dx

−

E

−

E

 

For all simple functions ψ(x) ≥ f(x). Similarly  

∫ f =  sup
 
∫ϕ(x)dx

 

E̅

 

E̅

 

For all simple functions ϕ(x) ≤ f(x). 

Now we use the theorem : 

“ Let f be defined and bounded on a measurable set E with mE finite. In order that  

inf
f≤ψ
∫ψ(x)dx

 

E

= sup
f≥ϕ

∫ϕ(x)dx

 

E

 

for all simple functions ϕ and ψ, it is necessary and sufficient that f is measurable.” 

And our definition of  Lebesgue integration takes the form :  

“ If f is a bounded measurable function defined on a measurable set E with mE finite , we define the 

(Lebesgue) integral of f over E by  

∫ f(x)dx = inf∫ψ(x)dx

 

E

 

E

 

for all simple functions ψ ≥ f.” 

The following theorem shows that the Lebesgue integral is in fact a generalization of the Riemann 

integral.  
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3.13. Theorem. Let f be a bounded function defined on [a,b]. If f is Riemann integrable on [a, b], then it 

is measurable and  

R∫ f(x)dx = ∫ f(x)

b

a

b

a

 

Proof .  Since f is a bounded function defined on [a, b] and is Riemann integrable, therefore,  

R∫ f(x)dx = inf
ϕ≥f

∫ϕ(x)dx

b

a

b̅

a

 

and  

R∫ f(x)dx = sup
ψ≤f

∫ψ(x)dx

b

a

b

a

 

for all step functions ϕ and ψ and then  

   

R∫ f(x)dx = R∫ f(x)dx

b

a

b̅

a

 

                        ⇒ inf
ϕ≥f

∫ ϕ(x)dx
b

a
= sup

ψ≤f
∫ ψ(x)dx
b

a
                                  (i) 

Since every step function is a simple function, we have  

R∫ f(x)dx

b

a

= sup
ψ≤f

∫ψ(x)dx

b

a

 ≤  inf
ϕ≥f

∫ϕ(x)dx

b

a

= R∫ f(x)dx

b

a

 

Then (i) implies that  

sup
ψ≤f

∫ψ(x)dx

b

a

= inf
ϕ≥f

∫ϕ(x)dx

b

a

 

and this implies that f is measurable also. 

3.14. Comparison of Lebesgue and Riemann integration  

(1) The most obvious difference is that in Lebesgue’s definition we divide up the  interval into subsets 

while in the case of Riemann we divide it into subintervals. 

(2)  In both Riemann’s and Lebesgue’s definitions we have upper and lower sums which tend to limits. 

In Riemann case the two integrals are not necessarily the same and the function is integrable only if 

they are same. In the Lebesgue case the two integrals are necessarily the same, their equality being 

consequence of the assumption that the function is measurable. 
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(3) Lebesgue’s definition is more general than Riemann. We know that if function is the R- integrable 

then it is Lebesgue integrable also, but the converse need not be true. For example the characteristic 

function of the set of irrational points have Lebesgue integral but is not R- integrable. 

Let χ be the characteristic function of the irrational numbers in [0,1]. Let E1 be the set of irrational 

number in [0,1], and let E2 be the set of rational number in [0,1]. Then P = [E1, E2] is a measurable 

partition of (0,1]. Moreover, χ is identically 1 on E1 and χ is identically 0 on E2 . Hence M[χ, E1] = 

m[χ, E2] = 1 , while M[χ, E1] = m[χ, E2] = 0. Hence U[χ, P] = 1.m E1 + 0.m E2 = 1. Similarly L[χ, P] 

= 1.m E1 + 0.M E2 = 1. Therefore, U[χ, P] = L[χ, P] . 

For Riemann integration  

M[χ,J] = 1 , m[χ,J] = 0  

for any interval J ⊂ [0,1] 

∴ U[χ, J] = 1, L[χ, J] = 0 . 

∴ The function is not Riemann- integrable. 

3.15. Theorem. If f and g are bounded measurable functions defined on a set E of finite measure, then  

(i) ∫ af = a∫ f
 

E

 

E
 

(ii) ∫ (f + g) = ∫ f + ∫ g
 

E

 

E

 

E
  

(iii) If f ≤ g a. e. , then ∫ f
 

E
 ≤ ∫ g

 

E
 

(iv) If f = g a. e. , then ∫ f
 

E
= ∫ g

 

E
 

(v) If A ≤ f(x) ≤ B, then  AmE ≤  ∫ f
 

E
 ≤ BmE. 

(vi) If A and B are disjoint measurable set of finite measure, then ∫ f = ∫ g
 

A
+ ∫ f

 

B

 

A∪B
 

Proof. We know that if ψ is a simple function then so is a ψ. 

Hence  ∫ af = inf
ψ≥f
∫ aψ
 

E
= a inf

ψ≥f
∫ ψ
 

E

 

E
= a∫ f

 

E
   

Which proves (i). 

To prove (ii) let ε denote any positive real number. These are simple functions ϕ ≤ f ,ψ ≥ f , ξ ≤

g and η ≥ g satisfying  

    ∫ϕ(x)dx >  ∫ f − ε

 

E

 

E

,            ∫ψ(x)dx <  ∫ f + ε

 

E

,

 

E

 

∫ ξ(x)dx >  ∫ g − ε

 

E

 

E

,                 ∫ η(x) < ∫g + ε,

 

E

 

 E

 

Since ϕ + ξ ≤ f + g ≤ ψ+ η ,  we have  

∫(f + g) ≥ ∫(ϕ + ξ)

 

E

= ∫ϕ

 

E

 

E

+∫ ξ > ∫ f + ∫g − 2ε

 

E

 

E

 

E

 

∫(f + g) ≤ ∫(ψ+ η)

 

E

= ∫ψ+∫ η <

 

E

 

E

 

E

∫ f + ∫g + 2ε

 

E

 

E
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Since these hold for every ε > 0, we have  

∫(f + g) = ∫ f

 

E

+ ∫ g

 

E

 

E

 

To prove (iii) it suffices to establish  

∫g − f

 

E

 ≥ 0 

For every simple function ψ ≥ g − f , we have ψ ≥ 0 almost everywhere in E. This means that ∫ ψ ≥ 0 
 

E
  

Hence we obtain  

∫(g − f) = inf
ψ≥(g−f)

∫ψ(x) ≥ 0                                            (1)

 

E

 

E

 

Which establishes (iii).  

Similarly we can show that  

∫(g − f) = sup
ψ≤(g−f)

∫ψ(x) ≤ 0                                    (2)

 

E

 

E

 

Therefore, from (1) and (2) the result (iv) follows. 

To prove (v) we are given that  

A ≤ f(x) ≤ B 

Applying (iv) we are given that  

∫ f(x)dx ≤ ∫Bdx = B∫dx = BmE

 

E

 

E

 

E

 

That is,     ∫ f ≤ BmE
 

E
 

Similarly we can prove that      ∫ f ≥ BmE
 

E
. 

Now we prove (vi). 

We know that χ
A∪B

= χ
A
+ χ

B
 

Therefore ,                      ∫ f
 

A∪B
= ∫  χ

A∪B
f =  ∫ f(

 

A∪B

 

A∪B
χ
A
+ χ

B
) 

= ∫ f

 

A∪B

χ
A
+ ∫ f

 

A∪B

χ
B

 

= ∫ f

 

A

+ ∫ f

 

B

 

Which proves the theorem. 
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3.16. Corollary.  If f and g are bounded measurable function then  

If  f(x) ≥ 0 on E then ∫ f
 

E
 ≥ 0  and  

If  f(x) ≤ 0 on E then ∫ f
 

E
 ≤ 0  . 

Proof : Let  ψ be a simple function such that ψ ≥ f 

Since f(x) ≥ 0 on E  ⇒ ψ ≥ 0 on E 

⇒ ∫ ψ
 

E
 ≥ 0   ⇒ Inf

ψ≥f
∫ ψ
 

E
 ≥ 0 i.e. ∫ f

 

E
 ≥ 0   

Similarly, Let ϕ be a simple function such that ϕ ≤ f. Since f(x) ≥ 0 on E 

 ⇒ ϕ ≤ 0 on E 

⇒ ∫ ϕ
 

E
 ≤ 0  ⇒ Sup

ϕ≤f
∫ ϕ
 

E
 ≤ 0 i.e.  ∫ f

 

E
 ≤ 0 

3.17. Corollary.  If m(E) = 0 , then ∫ f
 

E
= 0 

                                Or 

Integrals over set of measure zero are zero. 

Proof : Since f is bounded on E so there exist constant A and B such that  

A ≤ f(x) ≤ B 

⇒ A.m(E) ≤ ∫ f(x)dx

 

E

 ≤ B.m(E)    ∀ x ∈ E 

Since m(E) = 0 ⇒ ∫ f
 

E
= 0 

3.18. Corollary.   If f(x) = k a.e. on E then  ∫ f
 

E
= k.m(E) . In particular if f = 0 a.e. on E then ∫ f

 

E
= 0 

Proof : Since f(x) = k a.e on E then ∫ f
 

E
= 0 

3.19. Corollary.  If f = g a.e then ∫ f
 

E
= ∫ g

 

E
  but converse is not true. 

Proof : consider the functions 

f ∶ [−1,1] ⟶ R and g ∶ [1,1] ⟶ R 

as f(x) =  {
2 if x ≤ 0
0 if x > 0

  and g(x) =1     ∀ x  

Clearly f and g are bounded and measurable functions. 

⇒ f and g are lebesgue integrable on [-1,1] 

∫f(x)dx =  ∫ f(x)dx

0

−1

+ ∫ f(x)dx

1

0

1

−1

 

                                                             =  ∫ 2dx
0

−1
+ ∫ 0. dx

1

0
= 2  
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∫g(x)

1

−1

= ∫1dx

1

−1

= 1.m([−1,1]) =  1.2 = 2 

Therefore ∫ f
 

E
= ∫ g

 

E
 

But f ≠ g a.e on [-1,1] 

                                { ∵ m{x ∈ [−1,1] ; f ≠ g } = 2 ≠ 0 }  

Therefore f ≠ g a.e on E 

f and g are not equal even at a single point of [-1,1] as these are defined. 

3.20. Corollary. If f = 0 a.e on E then ∫ f
 

E
= 0 but converse is not true. 

Proof : Consider the function f : [-1,1] → R as f(x) =  {
  1  if x ≥ 0
−1 if x < 0 

 

∫f(x)dx = ∫ f(x)dx + ∫ f(x)dx 

1

0

0

−1

 

1

−1

 

                                                                 =  -1 + 1 = 0 

Clearly f ≠ 0 a.e as m{x ∈ [−1,1] ; f ≠ 0 } = m[−1,1] = 2 ≠ 0  

So converse is not true. 

3.21.Corollary.  If  ∫ f
 

E
= 0 and f ≥ 0 on E then f = 0 a.e. 

Proof : Suppose E has a subset A where f(x) > 0, 

i.e. A = ⋃ {x ∈ E ; f(x) >
1

n
}∞

x=1  

Let E1(n) = { x ∈ E  ; f(x) >
1

n
} 

If possible, suppose there is a positive integer N such that m(E1(N)) > 0. 

Then ∫ f
 

E
 ≥ ∫ f

 

E1(N)
 ≥

1

N
 m(E1(N)) > 0 

Which contradicts the fact that ∫ f
 

E
= 0 

Thus, m(E1(n)) = 0 for all n≥ 1. 

This proves the corollary. 

3.22. Corollary.  Let f be a bounded measurable function on a set of finite measure E. Then  

|∫ f
 

E
|  ≤ ∫ |f|

 

E
 

Proof : The function |f| is measurable and bounded  

Now -|f|  ≤ f ≤ |f| on E  
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By the linearity and monotonicity of integration, 

-|∫ f
 

E
|  ≤ ∫ f

 

E
≤ ∫ |f|

 

E
 

⇒ |∫ f
 

E
|  ≤ ∫ |f|

 

E
 

3.23. The Monotone Convergence Theorem  

 Let {fn} be an increasing sequence of non-negative measurable functions on E. If {fn} → f pointwise a.e 

on E, then lim
n→∞

∫ fn = ∫ f
 

E

 

E
 

Proof : Since {fn} is an increasing sequence  

So fn ≤ f a.e ∀ n 

⇒ lim ∫ fn ≤ ∫ f         … (1) 

Now by Fatou’s Lemma ∫ f  ≤ lim ∫ fn        … (2) 

From (1) and (2), we have  

lim ∫ fn =  lim ∫ f 

Hence the result . 

Case II  If f is a bounded function on E, then theorem is trivially true. Since in this case 

 |f(x)| ≤ M ∀ x ∈ E for some number M and thus ∈ > 0, one can choose a δ = (
∈

M
) > 0 for which m(A) 

< δ, then ∫ f ≤ M ∫ 1
 

A
= M.m(A) < ∈

 

A
. 

3.24. Remark : The technique used in above theorem helps us to evaluate the lebesgue integral of non-

negative bounded and unbounded functions. 

3.25. Example : Evaluate the Lebesgue integral of the function f : [0,1] → R  

f(x) = {
1
x
1
3⁄

⁄     if 0 < x ≤ 1

0     if x = 0
 

Clearly f is unbounded, non-negative function defined on [0,1]. Now define a sequence of functions {fn} 

on [0,1] as  

fn(x) = {
f(x)  if f(x) ≤ n
n       if n < 𝑓(𝑥)

 

i.e. fn(x) = {
f(x)  if x ≥

1

n3

n       if x <
1

n3

 

Clearly {fn} is increasing sequence of non-negative measurable functions such that fn→ f. So by 

monotone convergence theorem  
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∫f(x)dx =  lim
n→∞

∫fn(x)dx

1

0

1

0

 

                                                           = lim
n→∞

[∫ fn(x)dx + ∫ fn(x)dx
1
1
n3⁄

1
n3⁄

0
] 

                                                                                 =  lim
n→∞

[
 
 
 
∫ ndx + ∫ f(x)dx

1

1
n3⁄

1
n3⁄

0 ]
 
 
 
 

                                                                                 = lim
n→∞

[[nx]0

1
n3 ⁄
+ ∫ x

−1
3⁄ dx

1

1
n3⁄

] 

                                                                                  = lim
n→∞

[n.
1

n3
+ 
3

2
(1 −

1

n2
)] 

                                                                                  = 0 +
3

2
=
3

2
 

3.26. Theorem(Lebesgue Bounded Convergence Theorem). Let  < fn > be a sequence of measurable 

functions defined on a set E of finite measure and suppose that  < fn > is uniformly bounded, that is , 

there exist a real number M such that |fn(x)| ≤ M for all n ε N and for all x ε E . If lim
n→∞

fn(x) = f(x) for 

each x in E, then  

∫ f

 

E

= lim
n→∞

∫ fn  

 

E

. 

Proof. We shall apply Egoroff’s theorem to prove this theorem. Accordingly for a given ε > 0, there is 

an N and a measurable set E0 ⊂ E such that mE0
c <

ϵ

4M
 and for n ≥ N and x ε E0 we have  

|fn(x) − f(x)| <  
ϵ

2m(E)
 

|∫ fn − ∫ f

 

E

 

E

| = |∫(fn − f)

 

E

| ≤ ∫|fn − f|

 

E

 

= ∫|fn − f| + ∫|fn − f|

 

E0
c

 

E0

 

< 
ϵ

2m(E)
.m(E0) +

ϵ

4M
2M 

<
ϵ

2
+
ϵ

2
= ϵ. 

Hence   

∫ fn → ∫ f

 

E

 

E

 



The Lebesgue Integral 67 

3.27. Remark : Bounded Convergence Theorem need not be true in Riemann integral . 

3.28. Example : Let {ri} be a sequence of all rational numbers in [0,1]. 

Define Sn = {ri ∶ i = 1,2, … , n} , n ∈ N 

 and for each n ∈ N, consider the function fn(x) = {
1 if x ∈ Sn
0 if x ∉ Sn

= {r1, r2, … , rn} 

clearly each fn is bounded, also fn is discontinuous at n-points in [0,1] namely points of Sn 

i.e., r1, r2, … , rn .  

At x = r1  

lim
x→r1

−
fn(x) ≠ fn(r1) ≠ lim

x→r1
+
fn(x) 

Hence Riemann integrable on [0,1] 

[∵ A function is Riemann integrable, if it is continous except at a finite number of discontinuity] 

Now we have proved that  

lim
n→∞

R∫ fn(x)dx ≠ R∫ lim
n→∞

fn(x)dx

1

0

 

⇒ R∫ fn(x)dx =  ∫ fn(x)dx =  ∫ fn(x)dx

 

Sn∪Sn
c  

1

0

1

0

 

{ ∵ Sn ∪ Sn
c = [0,1] } 

= ∫ fn(x)dx + ∫ fn(x)dx

 

Sn
c

 

Sn

 

= ∫1 dx

 

Sn

+ ∫0 dx

 

Sn
c

= 1.m(Sn) =  0 

[∵ {Sn}sequence of rationals m(Sn) = 0] 

⇒ lim
n→∞

R∫ fn(x)dx = 0

1

0

 

Clearly {fn} is convergent to f when f is defined as  

f(x) =  {
1 if f is rational in [0,1]
0 if f is irrational in [0,1]

 

  and f is not Riemann – integrable on [0,1]  

⇒ R∫ f(x)dx  does not exists .

1

0

 



68 Measure and Integration Theory 

lim
n→∞

∫fn(x)dx ≠ R ∫ lim
n→∞

fn(x)dx

1

0

1

0

  

So bounded convergence theorem does not hold in Riemann integral . 

The integral of a non-negative function 

3.29. Definition. If f is a non-negative measurable function defined on a measurable set E, we define  

∫ f

 

E

= sup
h≤f

∫h

 

E

 , 

Where h is a bounded measurable function such that m{x|h(x) ≠ 0} is finite. 

3.30. Theorem. If f and g are non-negative measurable functions, then  

(i) ∫ cf
 

E
= c∫ f > 0

 

E
 

(ii) ∫ (f + g) = ∫ f + ∫ g
 

E

 

E

 

E
 and 

(iii) If f ≤ g a. e. , then 

∫ f ≤ ∫g

 

E

 

E

 

 Proof. The proof of (i) and (iii) follow directly from the theorem concerning properties of the integrals 

of bdd functions. 

We prove (ii) in detail. 

If h(x) ≤ f(x) and k(x) ≤ g(x), we have  h(x) + k(x) ≤ f(x) + g(x), and so  

∫(h + k) ≤ ∫(f + g)

 

E

 

E

 

i.e.           ∫ h
 

E
+ ∫ k ≤ ∫ (f + g)

 

E

 

E
 . 

Taking suprema, we have  

(iv) ∫ f + ∫ g ≤ ∫ (f + g)
 

E

 

E

 

E
 

On the other hand, let ℓ be a bounded measurable function which vanishes outside a set finite measure 

and which is not greater than (f + g). Then we define the functions h and k by setting  

                        h(x) = min (f(x), ℓ(x))  

and                  k(x) = ℓ(x) − h(x) 

we have                                                h(x) ≤ f(x),  

 k(x) ≤ g(x) 

 while h and k are bounded by the bound ℓ and vanish where ℓ vanishes. Hence  
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∫ℓ

 

E

= ∫h + ∫k

 

E

 

E

≤ ∫ f + ∫g

 

E

 

E

 

And so taking supremum, we have 

sup
ℓ≤f+g

∫ℓ

 

E

≤ ∫ f + ∫g

 

E

 

E

 

That is,  

(v) ∫ f + ∫ g
 

E

 

E
≥ ∫ (f + g)

 

E
  

From (iv) and (v), we have  

∫(f + g) = ∫ f + ∫g

 

E

 

E

 

E

 

3.31. Fatou’s lemma. If < fn >is a sequence of non-negative measurable functions and fn(x) → f(x) 

almost everywhere on a set E, then  

∫ f ≤

 

E

lim ∫ fn

 

E

 

Proof. Let h be a bounded measurable function which is not greater than f and which vanishes outside a 

set E’ of finite measure. Define a function hn by setting  

hn(x) = min{h(x), fn(x)} 

Then hn is  bounded but bounds for h and vanishes outside E’ . Now hn(x) →h(x) for each x in E’ .  

Therefore by “Bounded Convergence theorem” we have  

∫h = ∫h = lim
 
∫hn

 

E′

 

E′

 ≤

 

E

lim ∫ fn

 

E

 

Taking the supremum over h, we get  

∫ f 

 

E

≤ lim ∫ fn

 

E

 

3.32. The inequality in Fatou’s lemma may be strict  

Consider a sequence {fn} defined on R as  

fn(x) = {         
1 if x ∈ [n, n + 1]        E1  
0    otherwise             E2

 

Clearly sequence {fn} is sequence of non – negative measurable funcyions defined on R and  

lim
n→∞

fn = f where f = 0  ⇒  ∫ f = 0
 

R
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Also                                            ∫ fn = ∫ fn = ∫ fn + ∫ fn 
 

E2

 

E1

 

E1⋃E2

 

R
 

                                                                             = ∫ 1 + 0 = m(E1) = 1
 

E1
 

⇒ lim 
 
∫ fn 
 

R
= 1 and  we know that 0 < 1  

So ∫ f <
 

R
lim ∫ fn 

 

R
 

 3.33. Fatou’s lemma need not good unless the function fn is non – negative  

Let us consider the function fn(x) = { 
−n if 

1

n
 ≤ x ≤

2

n
               E1

0 otherwise                         E2
               

Hence lim
n→∞

fn(x) = f(x) = 0 a.e  ⇒ ∫ f(x)dx = 0
1

0
 

Also      ∫ fn(x)dx =  ∫ fn(x)dx + ∫ fn(x)dx
 

E2

 

E1

1

0
  

                                 =∫ −n dx + 0 =  −1
2
n⁄

1
n⁄

 

Thus  lim ∫ fn(x)dx =  −1 
1

0
 

⇒ ∫f(x)dx ≰ lim 

1

0

∫ fn(x)dx

1

0

 

3.34. Theorem( Lebesgue Monotone Convergence theorem). Let <  fn  >  be an increasing sequence of 

non negative measurable functions and let f = lim fn . Then  

∫f = lim∫ fn

 

 

 

Proof. By Fatou’s Lemma we have  

∫ f 

 

 

≤ lim ∫ fn

 

 

 

But for each n we have fn  ≤ f , son ∫𝑓𝑛 ≤ ∫𝑓. But this implies  

𝑙𝑖𝑚 ∫ 𝑓 ≤ ∫𝑓 

Hence  

∫𝑓 = 𝑙𝑖𝑚∫𝑓𝑛 

3.35. Definition.  A non-negative measurable functions f is called integrable over the measurable over 

the measurable set E if  

∫𝑓

 

𝐸

<  ∞ 
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3.36. Theorem. Let f and g be two non-negative measurable functions. If f is integrable over E and 

g(x)<f(x) on E, then g is also integrable on E, and  

∫(𝑓 − 𝑔)

 

𝐸

= ∫𝑓 − ∫𝑔

 

𝐸

 

𝐸

 

Proof. Since   ∫ 𝑓
 

𝐸
= ∫ (𝑓 − 𝑔) + ∫ 𝑔

 

𝐸

 

𝐸
 

and the left hand side is finite, the term on the right must also be finite and so g is integrable.  

3.37. Theorem.  Let f be a non-negative function which is integrable over a set E. The given 휀 > 0 there 

is a 𝛿 > 0 such that for every set 𝐴 ⊂ 𝐸 with 𝑚𝐴 < 𝛿 we have      

 ∫ 𝑓 <  휀
 

𝐴
 

Proof. If |𝑓| ≤ 𝐾, then   ∫ 𝑓 ≤  ∫ 𝐾 = 𝐾𝑚𝐴
 

𝐴

 

𝐴
 

Set 𝛿 <
𝜖

𝐾
   Then  ∫ 𝑓

 

𝐴
< 𝐾.

𝜖

𝐾
=  𝜖 . 

Set fn(x) = f(x) if f(x) ≤ n and fn(x) = n otherwise. Then each fn is bounded and fn converges to f at each 

point. By the monotone convergence theorem there is an N such that   ∫ 𝑓𝑁 > ∫ 𝑓
 

𝐸

 

𝐸
−

𝜖

2
  𝑎𝑛𝑑 ∫ (𝑓 − 𝑓𝑁) <  

𝜖

2

 

𝐸
 . 

Choose 𝛿 <
𝜖

2𝑁
 . If mA < 𝛿  , we have  

∫𝑓

 

𝐴

= ∫(𝑓 − 𝑓𝑁)

 

𝐴

+ ∫𝑓𝑁 

 

𝐴

 

                   <  ∫(𝑓 − 𝑓𝑁) + 𝑁𝑚𝐴

 

𝐸

            

                                                                                    (𝑠𝑖𝑛𝑐𝑒 ∫𝑓𝑁

 

𝐴

≤ ∫𝑁 = 𝑁𝑚𝐴 )

 

𝐴

            

<
𝜖

2
+
𝜖

2
=  𝜖  . 

3.38. The General Lebesgue Integral  

We have already defined the positive part 𝑓+ and negative part 𝑓− of a function as  

𝑓+ = 𝑚𝑎𝑥(𝑓, 0) 

𝑓 = 𝑚𝑎𝑥(−𝑓, 0) 

Also it was shown that  

𝑓 = 𝑓+ − 𝑓 

|𝑓| = 𝑓+ + 𝑓 

With these notions in mind, we make the following definition. 
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3.39. Definition. A measurable function f is said to be integrable over E if  𝑓+ and 𝑓 are both integrable 

over E. In this case we define  

∫𝑓 =  ∫𝑓+ − ∫𝑓

 

𝐸

 

𝐸

 

𝐸

 

3.40. Theorem. Let f and g be integrable over E. Then  

(i) The function f+g is integrable over E and  

∫(𝑓 + 𝑔) =  ∫𝑓 + ∫𝑔

 

𝐸

 

𝐸

 

𝐸

 

(ii) If 𝑓 ≤ 𝑔 𝑎. 𝑒.,  then  

∫𝑓 ≤ ∫𝑔

 

𝐸

 

𝐸

 

(iii) If  A and B are disjoint measurable sets contained in E, then  

∫ 𝑓 = ∫𝑓

 

𝐴

 

𝐴∪𝐵

+ ∫𝑓

 

𝐵

 

Proof. By definition, the function 𝑓+ , 𝑓 , 𝑔+, 𝑔  are all integrable. If ℎ = 𝑓 + 𝑔, then ℎ = (𝑓+−, 𝑓) +

(𝑔+ − 𝑔) and hence ℎ = (𝑓+ + 𝑔+) − (𝑓 + 𝑔) . Since 𝑓+ + 𝑔+ and  𝑓 + 𝑔 are integrable therefore 

their difference is also integrable. Thus h is integrable.  

We then have  

∫ℎ =

 

𝐸

∫[(𝑓+ + 𝑔+) − ( 𝑓 + 𝑔  )]

 

𝐸

 

         = ∫(𝑓+ + 𝑔+) − ∫( 𝑓 + 𝑔  )

 

𝐸

 

𝐸

 

          = ∫𝑓+ + ∫𝑔+ − ∫𝑓

 

𝐸

 

𝐸

 

𝐸

− ∫𝑔 

 

𝐸

 

= (∫𝑓+ − ∫𝑓 ) + (∫𝑔+
 

𝐸

− ∫𝑔  )

 

𝐸

 

𝐸

 

𝐸

 

That is,   ∫ (𝑓 + 𝑔) =  ∫ 𝑓 + ∫ 𝑔
 

𝐸

 

𝐸

 

𝐸
 

Proof of (ii) follows from part (i) and the fact that the integral of a non-negative integrable function is 

non-negative.  

For (iii) we have  ∫ 𝑓
 

𝐴∪𝐵
= ∫ 𝑓𝜒𝐴∪𝐵
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 =  ∫ 𝑓𝜒𝐴

 

 

+∫𝑓𝜒𝐵 = ∫𝑓

 

𝐴

+ ∫𝑓

 

𝐵

 

∗It should be noted that f+g is not defined at points where f = ∞ and g = −∞ and where f = −∞ and  

g  = ∞ . However, the set of such points must have measure zero, since f and g are integrable. Hence the 

integrability and the value of ∫(𝑓 + 𝑔) is independent of the choice of values in these ambiguous cases. 

3.41. Theorem.  Let f be a measurable function over E. Then f is integrable over E iff |𝑓| is integrable 

over E. Moreover, if f is integrable, then  

|∫ 𝑓

 

𝐸

| =  ∫|𝑓|

 

𝐸

 

Proof. If f is integrable then both 𝑓+ and 𝑓−  are integrable. But |𝑓| = 𝑓+ + 𝑓− . Hence integrability of 

𝑓+ and 𝑓− implies the integrability of |𝑓|. 

Moreover, if f is integrable, then since  𝑓(𝑥) ≤ |𝑓(𝑥)| = |𝑓|(𝑥) , the property which states that if 𝑓 ≤ 𝑔 

a.e. , then ∫𝑓 ≤ ∫𝑔 implies that  

∫𝑓 ≤ ∫|𝑓|                                                                    (𝑖) 

On the other hand since −𝑓(𝑥) ≤ |𝑓(𝑥)| , we have  

                           − ∫ 𝑓 ≤ ∫|𝑓|                                                                    (𝑖𝑖)      . 

From (i) and (ii)  

Conversely, suppose f is measurable and suppose |𝑓| is integrable. Since  

0 ≤ 𝑓+(𝑥) ≤ |𝑓(𝑥)| 

It follows that 𝑓+ is integrable. Similarly 𝑓− is also integrable and hence f is integrable. 

3.42. Lemma. Let f be integrable . Then given 휀 > 0 there exist 𝛿 > 0  such that |∫ 𝑓
 

𝐴
| < 𝜖  whenever 

A is measurable function f we have = 𝑓+ − 𝑓− . So by that we have proved already, given > 0 , there 

exist 𝛿1 > 0 such that  

∫𝑓+
 

𝐴

< 
휀

2
 . 

When mA<𝛿1. Similarly there exists 𝛿2 > 0 such that  

∫𝑓−
 

𝐴

< 
휀

2
 , 

When mA<𝛿2. Thus if mA < 𝛿 = min (𝛿1, 𝛿2) , we have  

|∫ 𝑓
 

𝐴
|  ≤ ∫ |𝑓| =  ∫ 𝑓+ + ∫ 𝑓− < 

2
+
2

 

𝐴

 

𝐴

 

𝐴
= 휀   

This completes the proof. 
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3.43. Theorem (Lebesgue Dominated Convergence Theorem) Let a sequence < fn > , 𝑛 휀 𝑁 of 

measurable functions be dominated by an integrable function g, that is  

|𝑓𝑛(𝑥)|  ≤ 𝑔(𝑥) 

Holds for every 𝑛 휀 𝑁 and every 𝑥 휀 𝑁  and let < fn > converges pointwise to a function f, that is , f(x) = 

𝑙𝑖𝑚
𝑛→∞

𝑓𝑛(𝑥) for almost all x in E. Then  

∫𝑓 = 𝑙𝑖𝑚
𝑛→∞

∫𝑓𝑛

 

𝐸

 

𝐸

 

Proof. Since |𝑓𝑛| ≤ 𝑔 for every 𝑛 휀 𝑁 and f(x) = 𝑙𝑖𝑚
𝑛→∞

𝑓𝑛(𝑥), we have |𝑓| ≤ 𝑔 . Hence fn and f are 

integrable. The function g – fn is non-negative, therefore by Fatou’s Lemma we have  

∫𝑔 − ∫𝑓

 

𝐸

= ∫(𝑔 − 𝑓)

 

𝐸

 ≤  𝑙𝑖𝑚

 

𝐸

∫(𝑔 − 𝑓𝑛)

 

𝐸

 

= ∫𝑔 − 𝑙𝑖𝑚

 

𝐸

∫𝑓𝑛

 

𝐸

 

Whence    ∫ f
 

E
 ≥ lim∫ fn

 

E
 

Similarly considering g + fn we get  

∫ f

 

E

 ≤ lim∫ fn

 

E

 

Consequently, we have   ∫ f =  lim∫ fn
 

E

 

E
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DIFFERENTIATION AND INTEGRATION 

The “fundamental theorem of the integral calculus” is that differentiation and integration are inverse 

processes. This general principle may be interpreted in two different ways. 

If f(x) is integrable, the function 

F(x) = ∫ f(𝑡)𝑑𝑡
𝑥

𝑎
 

is called the indefinite integral of f(x); and the principle asserts that(i) �́�(x) = f(x) (ii) 

On the other hand, if F(x) is a given function, and f(x) is defined by (ii), the principle asserts that 

∫ f(t)dt
x

a
 = F(x) − F(a) (iii) 

The main object of this chapter is to consider in what sense these theorems are true. 

From the theory of Riemann integration (ii) follows from (i) if x is a point of continuity of f. For we can 

choose h0 so small that |f(t) −f(x)| < 휀 for |t−x| ≤ h0; and the  

             
𝐹(𝑥+ℎ)−𝐹(𝑥)

ℎ
− f(𝑥) =  

1

ℎ
∫ {f(t) − f(x)}dt
x+h

x
≤ 휀             ( |h| < h0) by the mean-value theorem. 

This proves (ii). 

We shall show that more generally this relation holds almost everywhere. Thus differentiation is the 

inverse of Lebesgue integration. 

The problem of deducing (iii) from (ii) is more difficult and even using Lebesgue integral it is true only 

for a certain class of functions. We require in the first place that �́�(x)should exist at any rate almost 

everywhere and as we shall see this is not necessarily so. Secondly, if �́�(x)  exists we require that it 

should be integrable. 

Differentiation of Monotone Functions 

4.1. Definition. Let C be a collection of intervals. Then we say that C covers a set E in the sense of 

Vitali, if for each 휀 > 0 and x in E there is an interval I ∈ C such that x∈I and l(I) < 휀. 

Now we prove the following lemma which will be utilized in proving a result concerning the 

differentiation of monotone functions. 

4.2. Lemma.  (Vitali). Let E be a set of finite outer measure and C a collection of intervals which cover 

E in the sense of Vitali. Then given 휀 > 0 there is a finite disjoint collection {I1,…, In} of intervals in C 

such that 

                                                m*[E− ∪𝑛=1
𝑁 In] < 휀. 
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Proof. It suffices to prove the lemma in the case that each interval in C is closed, for otherwise we 

replace each interval by its closure and observe that the set of endpoints of I1, I2,…, IN has measure zero. 

Let O be an open set of finite measure containing E. Since C is a Vitali covering of E, we may suppose 

without loss of generality that each I of C is contained in O. We choose a sequence <In > of disjoint 

intervals of C by induction as follows : 

Let I1 be any interval in C and suppose I1,…, In have already been chosen. Let kn be the supremum of 

the lengths of the intervals of C which do not meet any of the intervals I1,…,In . 

        Since each I is contained in O, we have kn ≤ m O < ∞ . Unless, E ⊂  ∪𝑖=1
𝑛 II we can find In+1 in C 

with l(In+1) > 
1

2
 kn  and In+1 is disjoint from I1, I2,…, In. Thus we have a sequence < In > of disjoint 

intervals of C, and since U In ⊂O, we have ∑ 𝑙(In) ≤ m O <  ∞ . 

Hence we can find an integer N such that        ∑ 𝑙(𝐼𝑛) < 5
∞
𝑁+1  

Let             R = E − ∪𝑛=1
𝑁 In . 

         It remains to prove that m*R <  . 

Let x be an arbitrary point of R. Since ∪𝑛=1
𝑁 In   is a closed set not containing x, we can find an 

interval I in C which contains x and whose length is so small that I does not meet any of the intervals 

 I1, I2,…, IN . If now I ∩ Ii = ∅ for i ≤ N, we must have l(I) ≤ kN < 2l (IN+1). Since lim l(In) = 0 , the 

interval I must meet at least one of the intervals In. Let n be the smallest integer such that I meets In. 

We have n > N, and l(I) ≤ kN  ≤ 2l (IN+1). Since x is in I, and I has a point in common with In, it follows 

that the distance from x to the midpoint of In is at most  l(I) + 
1

2
 l (IN) ≤  

5

2
 l (IN+1). 

Let Jm  denote the interval which has the same  midpoint  as Im  and five times the length of    Im. Then 

we have x ∈ Jm. This proves  R ⊂∪𝑁+1
∞ Jn    

Hence  m* R≤ ∑ 𝑙(𝐽𝑛) = 5∑ 𝑙(𝐽𝑛)
∞
𝑁+1

∞
𝑁+1 < 휀. 

 The Four Derivatives of a Function 

Whether the differential coefficients 

             �́�(x) = lim
ℎ→0

f(𝑥+ℎ)−f(𝑥)

ℎ
 

           exist or not, the four expressions  

                         D+f(x) = lim
ℎ→0+

  
f(𝑥+ℎ)−f(𝑥)

ℎ
 

                         D−f(x) = lim
ℎ→0+

f(𝑥)−f(𝑥−ℎ)

ℎ
 

                         D+f(x) = lim  ℎ→0+   
f(𝑥+ℎ)−f(𝑥)

ℎ
 

                        D−f(x) = lim  ℎ→0+ 
f(𝑥)−f(𝑥−ℎ)

ℎ
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always exist. These derivatives are known as Dini Derivatives of the function f. 

D+ f(x) and D+ f(x) are called upper and lower derivatives on the right and D−f(x) and D−f(x) are  called 

upper and lower derivatives on the left. Clearly we have D+ f(x) ≥ D+ f(x) and D−f(x) ≥ D−f(x). 

If D+ f(x) = D+ f(x), the function f is said to have a right hand derivative and  if D−f(x) = D−f(x), the 

function is said to have a left hand derivative. 

         If D+ f(x) = D+ f(x) = D−f(x) = D−f(x)≠ ∓∞ we say that f is differentiable at x and define f’(x) to 

be the common value of the derivatives at x. 

4.3.Theorem. Every non-decreasing function f defined on the interval [a, b] is differentiable almost 

everywhere in [a, b]. The derivative f’ is measurable and 

                                  ∫ f′(x)dx 
b

a
 = f(b) − f(a) 

Proof. We shall show first that the points x of the open interval (a, b) at which not all of the four Dini-

derivatives of f are equal form a subset of measure zero. It suffices to show that the following four 

subsets of (a, b) are of measure zero: 

A = {x ∈ (a, b) | D- f(x) < D+ f(x) }, 

B = {x ∈ (a, b) | D+ f(x) < D- f(x) }, 

C = {x ∈ (a, b) | D- f(x) < D- f(x) }, 

D = {x ∈ (a, b) | D+ f(x) < D+ f(x) }. To prove m* A = 0 , consider the subsets 

Au,v = {x ∈ (a, b) | D- f(x) < u < v < D+ f(x) } 

of A for all rational numbers u and v satisfying u < v. Since A is the union of this countable family 

{Au,v}, it is sufficient to prove m* (Au,v) = 0 for all pairs u, v with u < v. 

For this purpose, denote 𝛼 = m* (Au,v) and let 휀 be any positive real number. Choose an open set 

 U ⊃ Au,v with m* U < 𝛼 + 휀 . Set x be any point of Au,v . Since D- f(x) < u, there are arbitrary small 

closed intervals of the form [x-h, x] contained in U such that 

f(x) - f(x-h) < uh. 

Do this for all x ∈ Au, v and obtain a Vitali cover C of Au,v. Then by Vitali covering theorem  there is a 

finite subcollection {J1, J2,…, Jn}of disjoint intervals in C such that 

m*(Au,v - ∪𝑖=1
𝑛 Ji) < 휀 

Summing over these n intervals, we obtain 

∑ 𝑓𝑥𝑖 − 𝑓(𝑥𝑖ℎ𝑖)
𝑛
𝑖=1

< 𝑢 ∑ ℎ𝑖
𝑛
𝑖=1

  

                                 < u m*U 

                                 < u(𝛼 + 휀) 

Suppose that the interiors of the intervals J1, J2,…, Jn cover a subset F of Au,v. Now since 

 D+ f(y) > v, there are arbitrarily small closed intervals of the form [y, y+k] contained in some of the 

intervals Ji (i = 1, 2,…, n) such that 
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f(y+k) − f(y) > vk 

Do this for all y ∈ F and obtain a Vitali cover D of F. Then again by Vitali covering lemma we can 

select a finite subcollection [K1, K2, …, Km] of disjoint intervals in D such that 

m* [F− ∪𝑖=1
𝑚 Ki ] < 휀 

Since m*F > 𝛼 − 휀 , it follows that the measure of the subset H of F which is covered by the intervals is 

greater than 𝛼 − 2휀. Summing over these intervals and keeping in mind that each Ki is contained in a Jn, 

we have 

                     ∑ {𝑓𝑥𝑖 − 𝑓(𝑥𝑖 − ℎ𝑖)
𝑛
𝑖=1

} ≥ ∑  [ 𝑓(𝑦𝑖 + 𝑘𝑖) − 𝑓𝑦𝑖
𝑚
𝑖=1

]  

                                                       > v ∑ 𝑘𝑖
𝑛
𝑖=1

 

                                                       > v(𝛼 −  2휀)  

           So that 

                         v(𝛼 −  2휀) < 𝑢(𝛼 −  휀 ) 

Since this is true for every 휀 > 0 , we must have v 𝛼 < u 𝛼. Since u < v, this implies that 𝛼 = 0 . Hence 

m*A = 0. Similarly, we can prove that m*B = 0, m*C = 0 and m*D = 0. This shows that    

                      g(x) = lim
ℎ→0

f(𝑥+ℎ)−f(𝑥)

ℎ
 

          is defined almost everywhere and that f is differentiable whenever g is finite.  

If we put 

gn(x) = n[f (x+
1

𝑛
) - f(x)]    for x ∈ [a,b] , 

where we re-define f(x) = f(b) for x ≥ b. Then gn(x) → g(x) for almost all x and so g is measurable since 

every gn is measurable. Since f is non-decreasing, we have gn ≥ 0. Hence, by  

Fatou’s Lemma 

∫ 𝑔
𝑏

𝑎
 ≤ 𝑙𝑖𝑚 ∫ 𝑔𝑛

𝑏

𝑎
= 𝑙𝑖𝑚 n ∫ [f (x +

1

n
) − f(x)]dx

b

a
 

                             = 𝑙𝑖𝑚 n ∫  f(x)dx − ∫ f(x)dx
b

a

b+
1

n

a+
1

n

 

                            = 𝑙𝑖𝑚 n ∫ [f(x) + ∫  f(x)dx
b+

1

n
b

− ∫ f(x)dx
a+

1

n
 

a

b

a
− ∫ f(x)dx

b

a
 

                            = 𝑙𝑖𝑚 n ∫ [f (x +
1

n
) − f(x)]dx

b

a
 

                           ≤ f(b)-f(a) 

         (Use of f(x) = f(b) for x ≥ b for first interval and f non-decreasing in the 2nd integral). 
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This shows that g is integrable and hence finite almost everywhere. Thus f is differentiable almost 

everywhere and g(x) = �́�(x) almost everywhere. This proves the theorem. 

Functions of Bounded Variation 

Let f be a real-valued function defined on the interval [a,b] and let a = x0 < x1 < x2 < … < xn = b be any 

partition of [a,b]. 

By the variation of f over the partition P = {x0, x1,…, xn} of [a,b], we mean the real number  V(f, P) 

= ∑ |f(xi) −
n
i=1  f(xi−1)| 

and then 

Va
b(f)  = sup {V(f,P) for all possible partitions P of [a,b] } 

=𝑠𝑢𝑝𝑃 ∑ |f(xi) −
n
i=1  f(xi−1)| 

is called the total variation of f over the interval [a,b].  If  Va
b(f) < ∞ then we say that f is a function of 

bounded variation and we write f ∈ BV. 

4.4. Lemma. Every non-decreasing function f defined on the interval [a,b] is of bounded variation with 

total variation 

  Va
b(f) = f(b) − f(a). 

Prof. For every partition P = [x0, x1, …, xn} of [a,b], we have 

V(f, P) = ∑ |f(xi) −
n
i=1  f(xi−1)| =∑ [f(xi) −

n
i=1  f(xi−1)] 

                                              = f(b) - f(a)                                      

         This implies the lemma. 

4.5.Theorem. (Jordan Decomposition Theorem). A function f: [a,b] → R is of bounded variation if and 

only if it is the difference of two non-decreasing functions. 

Proof. Let f = g-h on [a,b] with g and h increasing. Then for any, subdivision we have                  

       ∑ |f(xi) −
n
i=1  f(xi−1)| ≤ ∑ |g(xi) −

n
i=1  g(xi−1)| + ∑ |h(xi) −

n
i=1  h(xi−1)| 

                                           = g(b) −  g(a) + h(b) – h(a) 

Hence,  

                Va
b(f) ≤ g(b) −  g(a) + h(b) – h(a), 

which proves that f is of bounded variations. 

On the other hand, let f be of bounded variation. Define two functions g, h : [a, b]  →R by taking 

         g(x) = Va
x(f),    h(x) = Va

x(f) − f(x)   for every x ∈ [a, b]. Then f(x) = g(x) − h(x). 

The function g is clearly non-decreasing. On the other hand, for any two real numbers x and y in [a, b] 

with x ≤ y, we have 

h(y)−h(x) = [Va
x(f) − f(y)]  − [Va

x(f) − f(x)]    
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                          = Vx
y (f) – [f(y) − f(x)]  

                          ≥ Vx
y (f) −Vx

y (f) = 0 

Hence h is also non-decreasing. This completes the proof of the theorem. 

4.6. Examples. (1) If f is monotonic on [a,b], then f is of bounded variation on [a, b] and 

V(f) = |f(b)-f(a)| , where V(f) is the total variation. 

(2) If �́�(x) exists and is bounded on [a, b], then f is of bounded variation. For if  |�́�(x)| ≤ M we have 

∑ |f(xi) −
n
i=1  f(xi−1)| ≤ ∑ 𝑀|xi − xi−1

n
i=1  |=M(b-a) 

no matter which partition we choose. 

(3) f may be continuous without being of bounded variation. Consider 

                       f(x) ={
𝑥 𝑠𝑖𝑛

𝜋

𝑥
     (0 < 𝑥 ≤ 2)

0         (𝑥 = 0)
 

Let us choose the partition which consists of the points 

                           0, 
2

2𝑛−1
, 

2

2𝑛−3
, 

2

2𝑛−5
, ……

2

5
,
2

3
, 2 

Then the sum in the total variation is 

         ( 2 + 
2

3
 ) + (

 2

3
+
2 

5
) + …..+ (

2

2𝑛−3
+ 

2

2𝑛−1
) + 

2

 2𝑛−1
   > 

1

2
+
1

3
+…..+ 

1

𝑛
 

and this can be made arbitrarily large by taking n large enough, since ∑
1

𝑛
 diverges. 

(4). Since |f(x)− f(a)| ≤ V(f) for every x on [a,b] it is clear that every function of bounded variation is 

bounded.        

The Differentiation of an Integral 

Let f be integrable over [a,b] and let 

F(x) = ∫ f(t)dt
x

a
 

If f is positive, h > 0 , then we see that 

F(x+h) − F(x) = ∫ f(t)dt
x+h

x
 

Hence, integral of a positive function is non-decreasing. 

We shall show first that F is a function of bounded variation. Then, being function of bounded variation, 

it will have a finite differential coefficient F’ almost everywhere. Our object is to prove that �́�(x) = f(x) 

almost everywhere in [a,b]. We prove the following lemma : 

4.7. Lemma. If f is integrable on [a,b], then the function F defined by  

                            F(x) = ∫ f(t)dt
x

a
  

is a continuous function of bounded variation on [a,b]. 

Proof. We first prove continuity of F. Let x0 be an arbitrary point of [a,b]. Then 
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|F(x) − F(x0)| = |∫ f(t)dt
x

𝑥0
  | 

≤ ∫ |f(t)|dt
x

𝑥0

 

Now the integrability of f implies integrability of |f| over [a,b]. Therefore, given 휀> 0 there is a 

𝛿 > 0 such that for every measurable set A ⊂[a,b] with measure less than 𝛿, we have ∫ |f |
 

A
< 휀.Hence 

|F(x)-F(x0)| < 휀  whenever |x−x0| < 𝛿1 

and so f is continuous. 

To show that F is of bounded variation, let a = x0 < x1 < … < xn = b be any partition of [a,b]. Then 

∑ |F(xi) −
n
i=1 F(xi−1) = ∑ | ∫ f(t)dt

𝑥𝑖
a

 − ∫ f(t)dt
𝑥𝑖−1
a

 |n
i=1  

                                   = ∑ | ∫ f(t)dt
𝑥𝑖
𝑥𝑖−1

 |n
i=1  

                                  ≤ ∑ ∫ |f(t)|dt
𝑥𝑖
𝑥𝑖−1

 n
i=1   

                                  =∫ |f(t)|dt
b

a
 

        Thus                    Va
b(f) ≤ ∫ |f(t)|dt

b

a
< ∞ 

        Hence F is of bounded variation. 

4.8. Lemma. If f is integrable on [a, b] and  

                         ∫ f(t)dt
x

a
  = 0  

for all x ∈ [a,b], then f = 0 almost everywhere in [a,b]. 

Proof.   Suppose f > 0 on a set E of positive measure. Then there is a closed set F ⊂ E with m F > 0. Let 

O be the open set such that 

O = (a, b) – F 

Then either ∫ f 
b

a
  ≠ 0  or else 

                        0 = ∫ f 
b

a
= ∫ f 

 

A
+ ∫ f 

 

O
 

                       =∫ f 
 

F
 + ∑ ∫ f(t)dt

𝑏𝑛

𝑎𝑛
 ∞

n=1                                                                  (1) 

because O is the union of a countable collection {(an, bn)} of open intervals.     

 But, for each n, 

                       ∫ f(t)dt
𝑏𝑛

𝑎𝑛
= ∫ f(t)dt

𝑏𝑛

a
− ∫ f(t)dt

𝑎𝑛

a
  

                             = F(𝑏𝑛) –F(𝑎𝑛) = 0 (by hypothesis) Therfore, from (1), we have 



82 Measure and Integration Theory 

∫f 
 

F

= 0 

But since f > 0 on F and mF > 0, we have ∫ f 
 

F
> 0. 

We thus arrive at a contradiction. Hence f = 0 almost everywhere. 

4.9. Lemma. If f is bounded and measurable on [a, b] and 

F(x) = ∫ f(t)dt
x

F
 + F(a), 

         then F’(x) = f(x) for almost all x in [a,b]. fn(x) = 
1

ℎ
[∫ f(t)dt
x+h

a
− ∫ f(t)dt]

x

a
 

Proof. We know that an integral is of bounded variation over [a,b] and so F’(x) exists for almost all x in 

[a,b]. Let |f| ≤ K. We set 

fn(x) = 
F(x+h)−F(x)

h
 

          with h = 
1

𝑛
. Then we have 

              fn(x) = 
1

ℎ
[∫ f(t)dt
x+h

a
− ∫ f(t)dt]

x

a
 

                        = 
1

ℎ
[∫ f(t)dt
x+h

x
 

            implies | fn(x)| = |
1

ℎ
[∫ f(t)dt|
x+h

x
 ≤

1

ℎ
∫ |f(t)|dt
x+h

x
 

                                                               ≤
1

ℎ
 ∫ K dt
x+h

x
 

= 
K

h
 . h = K 

                Moreover,            

                                         fn(x) → F′(x) 

              Hence by the theorem of bounded convergence, we have 

              ∫ F′(x)dx
c

a
= lim ∫ fn(x)dx

c

a
 = lim

ℎ→0  

1

ℎ
∫ [F(x + h) − F(x)]dx
c

a
 

                                                            = lim
ℎ→0  

[ 
1

ℎ
∫ F(x)dx −

1

ℎ
∫ F(x)
c

a
dx

c+h

a+h
] 

                                                             = lim
ℎ→0  

[ 
1

ℎ
∫ F(x)dx −

1

ℎ
∫ F(x)
a+h

a
dx

c+h

c
] 

                                                              = F(c) –F(a) 

                                                             =∫ f(x)dx
c

a
 

Hence,  

                 ∫ [F′(x) − f(x)]dx
c

a
 = 0 
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For all c∈[a,b], and so 

              F’(x)= f(x) a.e. 

By using pervious lemma. 

Now we extend the above lemma to unbounded functions. 

4.10. Theorem. Let f be an integrable function on [a,b] and suppose that 

F(x) = F(a) +∫ f(x)dt
x

a
 

Then F’(x) = f(x) for almost all in x in [a,b]. 

Proof. Without loss of generality we may assume that f ≥ 0  (or we may write “From the definition of 

integral it is sufficient to prove the theorem when f ≥ 0). 

Let fn be defined by fn(x) = f(x) if f(x) ≤ n and fn(x) = n if f(x) > n. Then f-fn ≥ 0 and so 

               Gn(x) = ∫ (f − fn)
x

a
 

is an increasing function of x, which must have a derivative almost everywhere and this derivative will 

be non-negative. Also by the above lemma, since fn is bounded (by n), we have 

                           
𝑑

𝑑𝑥
(∫ fn )

x

a
 = fn(𝑥) a.e. 

Therefore, 

F’(x) = 
𝑑

𝑑𝑥
(∫ f )

x

a
 = 

𝑑

𝑑𝑥
(Gn + ∫ fn )

x

a
 

                            = 
𝑑

𝑑𝑥
(Gn +

𝑑

𝑑𝑥
(∫ fn )

x

a
 ≥ fn(𝑥)   a.e.                      (using (i)) 

Since n is arbitrary, making n→ ∞ we see that 

F’(x) ≥ f(x) a.e. 

Consequently, 

                         ∫ F′(x)dx
b

a
≥ ∫ f(x)dx

b

a
  = F(b) − F(a)  (using the hypothesis of the theorem) 

Also since F(x) is an increasing real valued function on the interval [a,b], we have 

                         ∫ F′(x)dx
b

a
≤ F(b) —F(A) = ∫ f(x)dx

b

a
 

Hence 

             ∫ F′(x)dx
b

a
= F(b) —F(A) = ∫ f(x)dx

b

a
 

implies  ∫ [F′(x) − f(x)]dx
b

a
= 0 

Since F’(x) − f(x)  ≥0 , this implies that F’(x)−  f(x) = 0 a.e. and so F’(x) = f(x) a.e. 
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Absolute Continuity 

4.11. Definition. A real-valued function f defined on [a,b] is said to be absolutely continuous on  [a,b] 

if, given 휀 > 0 there is a 𝛿 > 0 such that 

∑|f(xi′) −

n

i=1

F(xi)| < 휀 

for every finite collection {(xi, xi’)} of non-overlapping intervals with 

∑|xi′ − xi

n

i=1

| < 𝛿 

An absolutely continuous function is continuous, since we can take the above sum to consist of one term 

only. Moreover, if 

F(x) =∫ f(t)dt
x

a
   

Then 

         ∑ |f(xi′) −
n
i=1 F(xi)| = ∑ | ∫ f(t)dt

xi′

a
−n

i=1 ∫ f(t)dt
xi
a

|  

                                          = ∑ | ∫ f(t)dt |
xi′

xi

n
i=1   

                                          ≤ ∑ ∫ |f(t)|dt 
xi′

xi

n
i=1 = ∫ |f (t)|dt

 

E
 , 

where E is the set of intervals (x,xi’)  ≤    → 0 as  ∑ |xi′ − xi
n
i=1 | → 0          

The last step being the consequence of the result. 

“Let 휀 > 0 . Then there is a 𝛿 > 0 such that for every measurable set E ⊂ [a, b] with  

m E < 𝛿, we have ∫ | f |
 

A
 < 휀”. 

Hence every indefinite integral is absolutely continuous. 

4.12. Lemma. If f is absolutely continuous on [a,b], then it is of bounded variation on [a,b]. 

Proof. Let 𝛿 be a positive real number which satisfies the condition in the definition for 휀 = 1. Select a 

natural number 

                                        n >
𝑏−𝑎

𝛿
 

Consider the partition 𝜋 = {x0, x1,…, xn} of [a,b] defined by 

              xi = x0 +  
 𝑖(𝑏−𝑎)

𝑛
 

for every i = 0, 1,…, n. Since |xi − xi-1| < 𝛿, it follows that 

                Vxi−1
xi   (f) < 1. 

This implies 
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                                Va
b(f) = ∑ Vxi−1

xi   (f) < n
i=1 n 

Hence f is of bounded variation. 

4.13. Corollary. If f is absolutely continuous, then f has a derivative almost everywhere. 

Proof: Since f is absolutely continuous, then by above theorem, f is of bounded variation and hence f 

has a derivative almost everywhere (by theorem 4.3). 

4.14. Lemma. If f is absolutely continuous on [a,b] and f’(x) = 0 a.e., then f is constant. 

Proof. We wish to show that f(a) = f(c) for any c ∈ [a,b]. 

Let E ⊂ (a,c) be the set of measure c-a in which f’(x) = 0, and let 휀 and 𝜂 be arbitrary positive numbers. 

To each x in E there is an arbitrarily small interval [x, x+h] contained in [a,c] such that 

|f(x+h) - f(x) | < 𝜂 h  

By Vitali Lemma we can find a finite collection {[xk, yk]} of non-overlapping intervals of this sort 

which cover all of E except for a set of measure less than 𝛿, where 𝛿 is the positive number 

corresponding to 휀 in the definition of the absolute continuity of f . If we label the xk so that xk ≤ xk+1, 

we have (or if we order these intervals so that)   

                 a = y0 ≤ x1 < y1 ≤ x2 < …. < yn ≤ xn+1 = c 

and  

                            𝑓(∑ |xk+1 − yk
n
k=0 |) < 𝛿 

Now, ∑ |(yk) − f(xk)
n
k =0 | < 𝜂 ∑ |yk − xk

n
k =1 | < 𝜂(𝑐 − 𝑎) 

by the way to intervals {[xk, yk]} were constructed, and 

∑|f(xk+1) − f(yk)

n

k=0

| < 휀 

by the absolute continuity of f. Thus 

                   |f(c) − f(a) |= ∑ [ |𝑓(xk+1) − f(yk)
n
k =0 | ] + ∑ [ |𝑓(yk) − f(xk)]

n
k=1 |  ≤ 휀 + 𝜂(𝑐 − 𝑎)Since 휀 

and 𝜂 are arbitrary positive numbers, f(c) − f(a) = 0 and so f(c) = f(a).  

Hence f is constant. 

4.15. Theorem. A function F is an indefinite integral if and only if it is absolutely continuous. 

Proof. Let function F is an indefinite integral then 

F(x) = ∫ f(x)dt
x

a
 

 where f is integrable on [a, b] 

Now f is integrable on [a, b] 

 |𝑓| is integrable on [a, b]. Then for given 휀 > 0, there is a 𝛿 > 0 such that for every measurable 
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set A contained in [a, b] with m(A) < 𝛿, we have  ∫ |𝑓| < 휀
𝐴

 

Let {(xi, xi
’)}n

i=1 be any finite collection of pairwise disjoint interval in [a, b] such that ∑ |𝑥𝑖 − 𝑥′𝑖| < 𝛿
𝑛
𝑖=1  

Let A = ⋃ (𝑥𝑖, 𝑥
′
𝑖)

𝑛
𝑖=1  

Then m(A) =  ∑ |𝑥𝑖 − 𝑥′𝑖| < 𝛿𝑛
𝑖=1  

Therefore we have ∫ |𝑓| < 휀
𝐴

 

i.e., ∫ |𝑓| < 휀
⋃ (𝑥𝑖,𝑥

′
𝑖)

𝑛
𝑖=1

 

=> ∑ ∫ |𝑓| < 휀
𝑥′𝑖
𝑥𝑖

𝑛
𝑖=1  …(1) 

Consider ∑ |𝐹(𝑥′𝑖) − 𝐹(𝑥𝑖)| = ∑

|∫ 𝑓(𝑡)𝑑𝑡 − ∫ 𝑓(𝑡)𝑑𝑡
𝑥𝑖
𝑎

𝑥′𝑖
𝑎

|

= ∑ |∫ 𝑓(𝑡)𝑑𝑡
𝑥′𝑖
𝑥𝑖

|𝑛
𝑖=1

≤ ∑ ∫ |𝑓(𝑡)|
𝑥′𝑖
𝑥𝑖

𝑛
𝑖=1 𝑑(𝑡)

< 휀[𝑏𝑦 (1)]

𝑛
𝑖=1

𝑛
𝑖=1  

Conversely, Suppose F is absolutely continuous on [a,b]. Then F is of bounded variation and we may 

write 

F(x) = F1(x) − F2(x), 

where the functions Fi are monotone increasing. Hence F’(x) exists almost everywhere and |F’(x)| ≤ 

F1’(x) + F2’(x) 

Thus ∫ |F’(x)|dx  ≤ F1(b) + F2(b) − F1(a) − F2(a) 

and F’(x) is integrable. Let 

G(x) = ∫ F′(t)dt
x

a
 

Then G is absolutely continuous and so is the function f = F−G.  But by the above lemma since 

f’(x) = F’(x)– G’(x)= 0 a.e., we have f to be a constant function. That is, 

F(x) − G(x) = A (constant) 

         or 

F(x) = ∫ F′(t)dt
x

a
 = A 

         or 

 F(x) = ∫ F′(t)dt
x

a
 + A 

Taking x = a, we have A = F(a) and so 

F(x) = ∫ F′(t)dt
x

a
 + F(a) 

Thus F(x) is indefinite integral of F’(x). 


